Düşük güçte bir motor test düzeneği kurulumu ve örnek bir uygulama gerçekleştirilmesi

İçten yanmalı motorların test edilmesi işleminde genellikle ithalat yoluyla temin edilen, oldukça yüksek maliyetlimotor test dinamometreleri kullanılmaktadır. Bu çalışmanın amacı, oldukça yüksek maliyetli olan içten yanmalımotor test dinamometreleri yerine, tek silindirli dizel motorlu bir jeneratörün motor test düzeneğinedönüştürülmesi ile düşük maliyetli bir içten yanmalı motor test düzeneği elde etmektir. Elde edilen düzenekteviskozitesi toluen ile iyileştirilmiş olan fuel-oil kullanılarak motor performansına etkileri incelenmiştir. Bu çalışmakapsamında 10 HP güce ve 3000 d/d sabit devire sahip dizel motorlu jeneratör kullanılmıştır. Dizel motorunyüklenmesi işlemi jeneratöre alıcı bağlanması ile gerçekleştirilmiştir. Motorun gücü ve her bir krank mili açısı içinsilindir içi basıncı, yakıt hattı basıncı anlık olarak gözlenmiş ve kaydedilmiştir. Dizel ve dizel+fuel-oil karışımlarıkullanılarak gerçekleştirilen deneylerde, fuel-oil katkısı ile silindir içi basınç değerinin düştüğü, yakıt tüketimininve egzoz gazı sıcaklığının arttığı görülmüştür.

Designing a low power motor test assembly and performing a sample application

In the process of testing the internal combustion engines, high-cost engine test dynamometers are generally used. The aim of this study is to obtain a low-cost internal combustion engine tester by converting a single-cylinder diesel engine generator into a motor tester, rather than a high-cost internal combustion engine test dynamometer. Engine performance effects were investigated by using fuel-oil with viscosity toluene. Within the scope of this study, diesel powered generator with 10 HP power and 3000 1/min constant speed is used. The loading of the diesel engine was carried out by connecting the receiver to the generator. The in-cylinder pressure for the engine power and the crankshaft angle was instantaneously monitored and recorded at the fuel line pressure. In experiments carried out using diesel and diesel + fuel-oil mixtures, with the addition of fuel-oil, it was seen that the pressure in the cylinder decreased and fuel consumption and exhaust gas temperature increased.

___

  • [1] Passenbrunner T.E., Sassano M., Re L. 2013. Optimal Control of Internal Combustion Engine Test Benches equipped with Hydrodynamic Dynamometers. 7th IFAC Symposium on Advances in Automotive Control, September 4-7, pp576-581, Tokyo, Japan.
  • [2] Blumenschein J., Schrangl P., Passenbrunner T.E., Trogmann H., Re L. 2013. Easily Adaptable Model of Test Benches for Internal Combustion Engines. 2013 European Control Conference (ECC), July 17-19, 2013, Zürich, Switzerland.
  • [3] Öz İ.H., Borat O., Sürmen A. 2003. İçten Yanmalı Motorlar. Birsen Yayınevi, İstanbul.
  • [4] Batmaz U. 2010. Construction of a computer controlled diesel engine setup for performance and emission test. Master of Science in Mechanical Engineering Department, Middle East Technical University, Ankara, Türkiye.
  • [5] Aktaş A., Aydın M., Sekmen P. 2016. Bir AC Jeneratörün Motor Dinamometresi Olarak Kullanılabilirliğinin Araştırılması. El-Cezeri Fen ve Mühendislik Dergisi, 3 (3): 498-505.
  • [6] Çelik M.B., Bayır R., Özdalyan B. 2007. Bilgisayar destekli motor test standının tasarımı ve imalatı. Teknoloji, 10 (2): 131-141.
  • [7] Koç T. 2012. Bir motor test ünitesinin kontrol sisteminin tasarımı, Yüksek Lisans Tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Sakarya.
  • [8] Oliveira A., Morais A.M., Valente O.S., Sodré J.R. 2014. Combustion, performance and emissions of a diesel power generator with direct injection of B7 and port injection of ethanol. J Braz. Soc. Mech. Sci. Eng., 39: 1087-1096.
  • [9] Işık M.Z., Bayındır H., İscan B., Aydın H. 2017. The effect of n-butanol additive on low load combustion, performance and emissions of biodiesel-diesel blend in a heavy duty diesel power generator. Journal of the Energy Institute, 90: 174-184.
  • [10] Lata D.B., Misra A., Medhekar S. 2012. Effect of Hydrogen and LPG Addition on the Efficiency and Emissions of a Dual Fuel Diesel Engine. International Journal of Hydrogen Energy, 37: 6084- 6096.
  • [11] Singh R.N., Singh S.P., Pathak B.S. 2007. Investigations on Operation of CI Engine Using Producer Gas And Rice Bran Oil In Mixed Fuel Mode. Renewable Energy, 32: 1565-1580.
  • [12] Chung T.W., Liu K.T. Gao S. 2012. Fuel Properties and Emissions from a Diesel Power Generator Fuelled with Jatropha Oil and Diesel Fuel Blends. Advanced Materials Research, 347-353: 2688- 2691.
  • [13] Killol A., Reddy N. Paruvada S., Murugan S. 2019. Experimental studies of a diesel engine run on biodiesel n-butanol blends. Renewable Energy, 135: 687-700.
  • [14] Wittek K., Geiger F., Andert J., Martins M., Cogo V., Lanzanova T. 2019. Experimental investigation of a variable compression ratio system applied to a gasoline passenger car engine. Energy Conversion and Management, 183: 753-763.
  • [15] Kumar M.S., Arul K., Sasikumar N. 2019. Impact of oxygen enrichment on the engine's performance, emission and combustion behavior of a biofuel based reactivity controlled compression ignition engine. Journal of the Energy Institute, 92: 51-61.
  • [16] Montoya J.P.G., Diaz G.J.A., Arrieta A.A.A. 2018. Effect of equivalence ratio on knocking tendency in spark ignition engines fueled with fuel blends of biogas, natural gas, propane and hydrogen. International Journal of Hydrogen Energy, 43: 23041-23049.
  • [17] Labeckas G., Slavinskas S. 2013. Performance and emission characteristics of a direct injection diesel engine operating on KDV synthetic diesel fuel. Energy Conversion and Management, 66: 173-188.
  • [18] Aydın M., Irgin A., Çelik M.B. 2018. The Impact of Diesel/LPG Dual Fuel on Performance and Emissions in a Single Cylinder Diesel Generator. Applied Sciences, 8 (5): 825, 1-14.
  • [19] Hawi M., Elwardany A., Ookawara S., Ahmed M. 2019. Effect of compression ratio on performance, combustion and emissions characteristics of compression ignition engine fueled with jojoba methyl ester. Renewable Energy, 141: 632-645.
  • [20] Karthickeyan V. 2019. Effect of combustion chamber bowl geometry modification on engine performance, combustion and emission characteristics of biodiesel fuelled diesel engine with its energy and exergy analysis. Energy, 176: 830-852.
  • [21] Luo Q., Hu J.B., Sun B., Liu F., Wang X., Li C., Bao L. 2019. Experimental investigation of combustion characteristics and NOx emission of a turbocharged hydrogen internal combustion engine. International Journal of Hydrogen Energy, 44: 5573-5584.
  • [22] Yeom J.K., Jung S.H., Yoon J.H. 2019. An experimental study on the application of oxygenated fuel to diesel engines. Fuel, 248: 262-277.
  • [23] Öztürk U., Hazar H., Yılmaz F. 2019. Comparative performance and emission characteristics of peanut seed oil methyl ester (PSME) on a thermal isolated diesel engine. Energy, 167: 260-268.
  • [24] Lee J., Park C., Kim Y., Choi Y., Bae J., Lim B. 2019. Effect of turbocharger on performance and thermal efficiency of hydrogen-fueled spark ignition engine. International Journal of Hydrogen Energy, 44: 4350-4360.
  • [25] Asokan M.A., Prabu S.S., Bade P.K.K., Nekkanti V.M., Gutta S.S.G., 2019. Performance, combustion and emission characteristics of juliflora biodiesel fuelled DI diesel engine. Energy, 173: 883-892.
  • [26] Nour M., El-Seesy A.I., Abdel-Rahman A.K., Bady, M. 2018. Influence of adding aluminum oxide nanoparticles to diesterol blends on the combustion and exhaust emission characteristics of a diesel engine. Experimental Thermal and Fluid Science, 98: 634-644.
  • [27] Al-Dawody M.F., Jazie A.A., Abbas H.A. 2019. Experimental and simulation study for the effect of waste cooking oil methyl ester blended with diesel fuel on the performance and emissions of diesel engine. Alexandria Engineering Journal, 58: 9-17.
  • [28] Alptekin E., Sanli H., Canakci M. 2019. Combustion and performance evaluation of a common rail DI diesel engine fueled with ethyl and methyl esters. Applied Thermal Engineering, 149: 180- 191.
  • [29] Öztürk E. 2015. Performance, emissions, combustion and injection characteristics of a diesel engine fuelled with canola oil–hazelnut soapstock biodiesel mixture. Fuel Processing Technology, 129: 183-191.
  • [30] Özer S. 2015. Pirina yağından fuzel yağı ile biyodizel üretimi ve dizel motor performans ve emisyonlarına etkisi. Doktora Tezi, Karabük Üniversitesi, Fen Bilimleri Enstitüsü, Karabük.
  • [31] Sandalcı T., Işın Ö., Galata S., Karagöz Y., Güler İ. 2019. Effect of hythane enrichment on performance, emission and combustion characteristics of an CI engine. International Journal of Hydrogen Energy, 44: 3208-3220.
  • [32] Jamrozik A., Tutak W., Pyrc M., Gruca M., Kocisko M. 2018. Study on co-combustion of diesel fuel with oxygenated alcohols in a compression ignition dual-fuel engine. Fuel, 221: 329-345.
  • [33] Tangöz S., Kahraman N., Akansu S.O. 2017. The effect of hydrogen on the performance and emissions of an SI engine having a high compression ratio fuelled by compressed natural. International Journal of Hydrogen Energy, 42: 25766-25780.
  • [34] Sharma T.K. 2015. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture. Journal of Advanced Research, 6: 819-826.
  • [35] Yılmaz E., Aksoy F. 2019. %10 Balık Yağı Biyodizeli-%90 Dizel Yakıt Karışımı İle Çalışan Direkt Enjeksiyonlu Bir Dizel Motorunda Yanma ve Performans Karakteristiklerinin İncelenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 7 (1): 12-24.
  • [36] Şimşek D., Çolak N.Y. 2019. Biyodizel/Propanol Yakıt Karışımlarının Dizel Motor Emisyonlarına Etkisinin İncelenmesi. El-Cezeri Fen ve Mühendislik Dergisi, 6 (1): 166-174.
  • [37] Kumar R., Gakkhar R.P. 2018. Influence of nozzle opening pressure on combustion, performance and emission analysis of waste cooking oil biodiesel fuelled diesel engine. Int. J. Renewable Energy Technology, 9 (1/2): 244-259.
  • [38] Aydogan H., Acaroglu M., Ozcelik A.E. 2018. Comparison of Performance and Combustion Characteristics of Methyl Ester and Ethanol Used In a Common Rail Diesel Engine. 4th International Conference On Environmental Science and Technology, 19-23 September 2018 Kiev, Ukraine.
  • [39] Kumar R., Gakkhar R.P. 2018. Influence of nozzle opening pressure on combustion, performance and emission analysis of waste cooking oil biodiesel fuelled diesel engine. Int. J. Renewable Energy Technology, 9 (1/2): 244-259.
  • [40] Azad A.K., Rasul M.G., Bhatt C. 2019. Combustion and emission analysis of Jajoba biodiesel to assess its suitability as an alternative to diesel fuel. Energy Procedia, 156: 159-165.
  • [41] Raman L.A., Deepanraj B., Rajakumar S., Sivasubramanian V. 2019. Experimental investigation on performance, combustion and emission analysis of a direct injection diesel engine fuelled with rapeseed oil biodiesel. Fuel, 246: 69-74.
  • [42] Srivastava P.K., Verma M. 2008. Methyl ester of karanja oil as an alternative renewable source energy. Fuel, 87: 1673-1677.
  • [43] Arunkumar M., Kannan M., Murali G. 2019. Experimental studies on engine performance and emission characteristics using castor biodiesel as fuel in CI engine. Renewable Energy, 131: 737- 744.
  • [44] Dhanasekaran R., Ganesan S., Kumar B.R., Saravanan S. 2019. Utilization of waste cooking oil in a light-duty DI diesel engine for cleaner emissions using bio-derived propanol. Fuel, 235: 832- 837.
  • [45] Shen X., Shi J., Cao X., Zhang X., Zhang W., Wu H. 2018. Real-world exhaust emissions and fuel consumption for diesel vehicles fueled by waste cooking oil biodiesel blends. Atmospheric Environment, 191: 249-257.
  • [46] Valente O.S., Silva M.J., Pasa V.M.D., Belchior C.R.P., Sodre J.R. 2010. Fuel consumption and emissions from a diesel power generator fuelled with castor oil and soybean biodiesel. Fuel, 89: 3637-3642.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü