Doğal Oksit Arayüzey Tabakalı Zr/p-Si Schottky Diyotlarının Yüksek Frekanslarda Kapasite-Gerilim ve İletkenlik-Gerilim Karakteristiklerinin Analizi

Manyetik saçtırma yöntemiyle imal edilen Zr/SiO2/p-Si Schottky diyotların kapasite-gerilim-frekans (C-V-f) veiletkenlik-gerilim-frekans (G-V-f) ölçümleri 500 kHz- 3 MHz aralığında 5 farklı frekansta ve oda sıcaklığındaalınmıştır. 1 MHz frekans için C-V karakteristiği yardımıyla arayüzey oksit tabakasının kalınlığı 2.33 nm olarakhesaplanmıştır. Güçlü birikim bölgesindeki C ve G değerleri kullanılarak seri direncin ortalama değeri 70.5 olarak elde edilmiştir. Bu diyotlar için, Hill-Coleman metodu ile hesaplanan arayüzey durum yoğunluğunun (Dit)artan frekansla azaldığı görülmüştür. Elde edilen bulgulara göre, Zr/SiO2/p-Si Schottky diyotları hızlı anahtarlamaiçin umut vaat edicidir.

The Analysis of Capacitance-Voltage and Conductance-Voltage Characteristics of Zr/p-Si Schottky Diodes with a Native Oxide Interfacial Layer at High Frequencies

Capacitance-voltage-frequency (C-V-f) and conductance-voltage-frequency (G-V-f) measurements of Zr/SiO2/pSi Schottky diodes produced by magnetic sputtering technique were taken for five different frequencies (500 kHz3 MHz frequencies range) at room temperature. The thickness of the interfacial oxide layer was calculated as 2.33 nm by means of C-V characteristic for 1 MHz frequency. The average value of series resistance was obtained as 70.5  by using C and G values in the strong accumulation region. For these diodes, it was observed that the interfacial state density (Dit) calculated by the Hill-Coleman method decreased with increasing frequency. According to the findings, the Zr/SiO2/p-Si Schottky diodes are promising for fast switching.

___

  • [1] Rhoderick E.H. 1982. Metal-Semiconductor Contacts. IEE Proceedings I Solid State and Electron Devices, 129 (1): 1-14.
  • [2] Neamen D.A. 2003. Semiconductor Physics and Devices: Basic Principles.McGraw-Hill, New York, 1-729.
  • [3] Su G., Yang S., Li S., Butch C.J., Filimonov S.N., Ren J.C., Liu W. 2019. Switchable Schottky Contacts: Simultaneously Enhanced Output Current and Reduced Leakage Current. Journal of the American Chemical Society, 141 (4): 1628-1635.
  • [4] Sze S.M., Kwok K.N. 2007. Physics of Semiconductor Devices. John Wiley and Sons, Canada, 1-815.
  • [5] Michaelson H.B. 1978. Relation between an Atomic Electronegativity Scale and the Work Function. IBM Journal of Research and Development, 22 (1): 72-80.
  • [6] Zhang Y.-Y., Jung S.-Y., Oh J., Shin H.-S., Oh S.-K., Wang J.-S., Majhi P., Jammy R., Lee H.- D. 2010. Influence of Incorporating Rare Earth Metals on the Schottky Barrier Height of Ni Silicide. Japanese Journal of Applied Physics, 49 (5): 055701.
  • [7] Romanov R.I., Zuev V.V., Fominskii V.Y., Demin M.V., Grigoriev V.V. 2010. Electrical Properties of Thin-Film Structures Formed by Pulsed Laser Deposition of Au, Ag, Cu, Pd, Pt, W, Zr Metals on n-6H-SiC Crystal. Semiconductors, 44 (9): 1192-1198.
  • [8] Tan C.K., Abdul Aziz A., Hassan Z., Yam F.K., Lim, C.W., Hudeish A.Y. 2006. Pinning Fermi Level of p-GaN due to Three Different (Zr, Ti and Cr) Metal Contact. Materials Science Forum, 517: 262-266.
  • [9] Tan C.K., Abdul Aziz A., Yam F.K. 2006. Schottky Barrier Properties of Various Metal (Zr, Ti, Cr, Pt) Contact on p-GaN Revealed from I-V-T Measurement. Applied Surface Science, 252 (16): 5930-5935.
  • [10] Yamauchi T., Zaima S., Mizuno K., Kitamura H., Koide Y., Yasuda Y. 1990. Solid Phase Reaction and Electrical Properties in Zr/Si System. Applied Physics Letters, 57 (11): 1105-1107.
  • [11] Rajagopal Reddy V., Asha B., Choi C.-J. 2017. Schottky Barrier Parameters and Structural Properties of Rapidly Annealed Zr Schottky Electrode on p-Type GaN. Journal of Semiconductors, 38 (6): 064001.
  • [12] Nicollian E.H., Brews J.R. 1982. MOS (Metal Oxide Semiconductor) Physics and Technology, John Wiley and Sons, New York, 1-906.
  • [13] Lapa H.E., Kökce A., Al-Dharob M., Orak İ., Özdemir A.F., Altındal Ş. 2017. Interfacial Layer Thickness Dependent Electrical Characteristics of Au/(Zn-Doped PVA)/n-4H-SiC (MPS) Structures at Room Temperature. The European Physical Journal Applied Physics, 80 (1): 10101.
  • [14] Altındal Ş., Kanbur H., Yücedağ İ., Tataroğlu A. 2008. On the Energy Distribution of Interface States and Their Relaxation Time and Capture Cross Section Profiles in Al/SiO2/p-Si (MIS) Schottky Diodes. Microelectronic Engineering, 85 (7): 1495-1501.
  • [15] Rhoderick E.H., Williams R.H. 1988. Metal-Semiconductor Contacts. Clarendon Press, Oxford, 1-252.
  • [16] Morita M., Ohmi T., Hasegawa E., Kawakami M., Ohwada M. 1990. Growth of Native Oxide on a Silicon Surface. Journal of Applied Physics, 68 (3): 1272-1281.
  • [17] Gräf D., Grundner M., Schulz R., Mühlhoff L. 1990. Oxidation of HF-Treated Si Wafer Surfaces in Air. Journal of Applied Physics, 68 (10): 5155-5161.
  • [18] Graf D., Bauer Mayer S., Schnegg A. 1993. Influence of HF-H2O2 Treatment on Si(100) and Si(111). Journal of Alloys and Compounds, 74 (3): 1679-1683.
  • [19] Çetinkara H.A., Güder H.S. 2010. On the Effects of Air-Exposure-Time and Time-Dependency of Pb/p-Si Schottky Diodes.Physica B, 405: 4480-4487.
  • [20] Tecimer H., Uslu H., Alahmed Z.A., Yakuphanoğlu F., Altındal Ş. 2014. On the Frequency and Voltage Dependence of Admittance Characteristics of Al/PTCDA/p-Si (MPS) Type Schottky Barrier Diodes (SBDs). Composites Part B, 57: 25-30.
  • [21] Sharma B.L. 1984. Metal-Semiconductor Schottky Barrier Junctions and Their Applications. Plenum Press, New York and Londra, 1-370.
  • [22] Türüt A., Sağlam M. 1992. Determination of the Density of Si-Metal Interface States and Excess Capacitance Caused by Them. Physica B: Condensed Matter, 179 (4): 285-294.
  • [23] Hill W.A., Coleman C.C. 1980. A Single-Frequency Approximation for Interface-State Density Determination. Solid-State Electronics, 23 (9): 987-993.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü