Elektro Eğirme Yöntemiyle Üretilen TiO2-RGO Kompozit Tabanlı Kuantum Nokta Duyarlı Güneş Pilleri

Bu çalışmada öncelikle modifiye Hummers metodu kullanılarak grafen oksit (GO) üretilmiştir. Üretilen grafenoksit kimyasal yolla indirgenerek, indirgenmiş grafen oksit (RGO) sentezlenmiştir. Sentezlenen RGO ve TiO2çözeltileri kullanılarak tek adım elektro eğirme yöntemi ile saf TiO2 ve TiO2-RGO tabanlı fotoanaot yüzeyleresahip kuantum nokta duyarlı güneş pilleri üretilmiştir. Üretilen güneş pillerinin kısa devre akım yoğunluğu (Jsc) veaçık devre gerilimi (Voc) ölçümleri yapılmıştır. Saf TiO2 fotoanota sahip güneş pilinin kısa devre akımı yoğunluğu0,672 mA/cm2, TiO2-RGO kompozit fotoanota sahip güneş pilinin ise 0,770 mA/cm2 olarak ölçülmüştür. Ayrıcagüneş pillerinin admitans spektroskopisi 10 kHz-1MHz frekans aralığında ölçülmüştür. Üretilen güneş pillerininkapasite-voltaj (C-V), iletkenlik-voltaj (G-V) karakteristikleri seri direnç etkisi dikkate alınarak incelenmiştir.

TiO2-RGO Composite Based Quantum Dot Sensitized Solar Cells via Electrospinning Technique

In this study, graphene oxide (GO) was prepared by the modified Hummers method. Later the synthesized graphene oxide was reduced to reduced graphene oxide (RGO) by the chemical reduction process. In summary, the pure TiO2 and TiO2-graphene composite photoanode based quantum dot sensitized solar cells have been fabricated by the one-step method of electrospinning technique. The solar cells fabricated have been measured short current density (Jsc) and open-circuit voltage (Voc). The short current densities of TiO2 and TiO2-RGO-based composite quantum dot solar cells are 0,672 mA/cm2 and 0,770 mA/cm2 , respectively. In addition, admittance spectroscopy of solar cells were measured in a variable frequency ranges of 10 kHz-10 MHz. The fabricated of solar cells were investigated the capacitance-voltage (C-V), conductance-voltage (G/ω-V) characteristics by attention the series resistance (Rs) effect.

___

  • [1] Hashimoto H., Muramatsu Y., Nishina Y., Asoh H. 2019. Bipolar anodic electrochemical exfoliation of graphite powders. Electrochemistry Communications, 104: 106475.
  • [2] Long C.M., Nascarella M.A., Valberg P.A. 2013. Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions. Environmental Pollution, 181: 271-286.
  • [3] Sun Q., Li Y.-D., Liu L., Feng Z.-B., Lu P., Wang Z.-R., Zhang X. 2019. Heat-treatment-assisted approach towards scalable synthesis of mesoporous carbons for high-performance lithium-sulfur battery. Materials Letters, 246: 165-168.
  • [4] Popov V.N. 2004. Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports, 43 (3): 61-102.
  • [5] Siddiqui M.T.H., Nizamuddin S., Baloch H.A., Mubarak N.M., Al-Ali M., Mazari S.A., Bhutto A.W., Abro R., Srinivasan M., Griffin G. 2019. Fabrication of advance magnetic carbon nanomaterials and their potential applications: A review. Journal of Environmental Chemical Engineering, 7 (1): 102812.
  • [6] Yalcin M., Yakuphanoglu F. 2017. Graphene-TiO2 Nanocomposite Photoanode Based on Quantum Dot Solar Cells. Journal of Nanoelectronics and Optoelectronics, 12 (3): 254-259.
  • [7] Ubani C.A., Ibrahim M.A., Teridi M.A.M., Sopian K., Ali J., Chaudhary K.T. 2016. Application of graphene in dye and quantum dots sensitized solar cell. Solar Energy, 137: 531-550.
  • [8] Ayesh A.I., Ahmed R.E., Al-Rashid M.A., Alarrouqi R.A., Saleh B., Abdulrehman T., Haik Y., Al-Sulaiti L.A. 2018. Selective gas sensors using graphene and CuO nanorods. Sensors and Actuators A: Physical, 283: 107-112.
  • [9] Zhu H., Wei J., Wang K., Wu D. 2009. Applications of carbon materials in photovoltaic solar cells. Solar Energy Materials and Solar Cells, 93 (9): 1461-1470.
  • [10] Tsai T.-H., Chiou S.-C., Chen S.-M. 2011. Enhancement of dye-sensitized solar cells by using graphene-TiO2 composites as photoelectrochemical working electrode. Int. J. Electrochem. Sci, 6 (8): 3333-3343.
  • [11] Nair R.R., Blake P., Grigorenko A.N., Novoselov K.S., Booth T.J., Stauber T., Peres N.M.R., Geim A.K. 2008. Fine structure constant defines visual transparency of graphene. Science, 320 (5881): 1308-1308.
  • [12] Park S., Ruoff R.S. 2009. Chemical methods for the production of graphenes. Nature nanotechnology, 4 (4): 217.
  • [13] Liu J., Tang J., Gooding J.J. 2012. Strategies for chemical modification of graphene and applications of chemically modified graphene. Journal of Materials Chemistry, 22 (25): 12435- 12452.
  • [14] Shen J., Yan B., Shi M., Ma H., Li N., Ye M. 2011. One step hydrothermal synthesis of TiO2- reduced graphene oxide sheets. Journal of Materials Chemistry, 21 (10): 3415-3421.
  • [15] Shen J., Shi M., Yan B., Ma H., Li N., Ye M. 2011. Ionic liquid-assisted one-step hydrothermal synthesis of TiO2-reduced graphene oxide composites. Nano Research, 4 (8): 795.
  • [16] Zhu P., Nair A.S., Shengjie P., Shengyuan Y., Ramakrishna S. 2012. Facile fabrication of TiO2– graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning. ACS applied materials & interfaces, 4 (2): 581-585.
  • [17] He Z., Guai G., Liu J., Guo C., Loo J.S.C., Li C.M., Tan T.T. Y. 2011. Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dyesensitized solar cells. Nanoscale, 3 (11): 4613-4616.
  • [18] Hummers Jr W.S., Offeman R.E. 1958. Preparation of graphitic oxide. Journal of the American Chemical Society, 80 (6): 1339-1339.
  • [19] Madhavan A.A., Kalluri S., Chacko D.K., Arun T.A., Nagarajan S., Subramanian K.R., Nair A.S., Nair V.S., Balakrishnan A. 2012. Electrical and optical properties of electrospun TiO2-graphene composite nanofibers and its application as DSSC photo-anodes. RSC Advances, 2 (33): 13032- 13037.
  • [20] Santra P.K., Kamat P.V. 2012. Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. Journal of the American Chemical Society, 134 (5): 2508-2511.
  • [21] Zhao J., Wu J., Yu F., Zhang X., Lan Z., Lin J. 2013. Improving the photovoltaic performance of cadmium sulfide quantum dots-sensitized solar cell by graphene/titania photoanode. Electrochimica Acta, 96: 110-116.
  • [22] Kamat P.V. 2012. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer. Accounts of chemical Research, 45 (11): 1906-1915.
  • [23] Mora-Sero I., Gimenez S., Fabregat-Santiago F., Gómez R., Shen Q., Toyoda T., Bisquert J. 2009. Recombination in quantum dot sensitized solar cells. Accounts of Chemical Research, 42 (11): 1848-1857.
  • [24] Jun H.K., Careem M.A., Arof A.K. 2013. Quantum dot-sensitized solar cells-perspective and recent developments: a review of Cd chalcogenide quantum dots as sensitizers. Renewable and Sustainable Energy Reviews, 22: 148-167.
  • [25] Yahia I.S., Hafez H.S., Yakuphanoglu F., Senkal B.F., Mottaleb M.A. 2011. Photovoltaic and impedance spectroscopy analysis of p–n like junction for dye sensitized solar cell. Synthetic metals, 161 (13-14): 1299-1305.
  • [26] Subalakshmi K., Senthilselvan J. 2018. Effect of fluorine-doped TiO2 photoanode on electron transport, recombination dynamics and improved DSSC efficiency. Solar Energy, 171: 914-928.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü