Sülfodiazin, Sülfomerazin ve Sülfometazinin İyonlaşma Sabitlerinin Potansiyometrik Titrasyon Yöntemi ile Tayini

Bu çalışmada sülfonamit grubu ilaçlardan sülfodiazin, sülfomerazin ve sülfometazinin biyolojik sıvılardakiçözünürlük, lipofilisite, asitlik, transfer davranışı, reseptörlere bağlanma ve geçirgenlik gibi özellikleri hakkındakritik bilgiler elde etmemizi sağlayan iyonlaşma sabiti değerleri potansiyometrik titrasyon yöntemiyle tayinedilmiştir. Bileşiklerin suda çözünürlükleri az olması sebebiyle belirli yüzdelerde metanol-su (v/v) ikilikarışımlarında 25oC’de çalışılmış ve verilerin değerlendirilmesinde PKPOT programı ile Gran metodukullanılmıştır. Metanol-su ortamında hesaplanan iyonlaşma sabiti değerlerinden sudaki iyonlaşma sabitideğerlerine geçişte Yasuda- Shedlovsky ekstrapolasyon yöntemi kullanılmıştır. Sülfodiazin için iyonlaşma sabitideğerleri 2,915-6,936; sülfomerazin için 2,734-6,955; sülfometazin için ise 2,466-7,537 olarak bulunmuştur.İyonlaşma sabitlerinin potansiyometrik titrasyon yöntemiyle tayininden elde edilen veriler bu ilaç aktif bileşiklerleçalışan araştırmacılara bilgi kaynağı oluşturacaktır.

Determination of Ionization Constants of Sulfodiazine, Sulfomerazine and Sulfomethazine by Potentiometric Titration Method

In this study, ionization constant values were determined by potentiometric titration method which provides critical information about the properties of sulfodiazine, sulfomerazine and sulfometazine from sulfonamide group drugs such as solubility, lipophilicity, acidity, transfer behavior, binding to receptors and permeability in biological fluids. Because of the low water solubility of the compounds, 40%, 50% and 60% (v/v) methanol-water binary mixtures were studied at 25 °C. Gran method and PKPOT program were used to evaluate the data obtained from these 3 different media. Yasuda-Shedlovsky extrapolation method was used in the transition from ionization constant values calculated in methanol-water media to ionization constant values in water. The ionization constant values for sulfadiazine are 2,915-6,936; 2,734-6,955 for sulfomerazine; and for sulphometazine 2,466-7,537. The data obtained from determination of ionization constants by potentiometric titration method will provide information source for researchers working with this drug active compounds.

___

  • [1] Kishore D., Pareek A. 2013. A short review on sulphonamides. International journal of pharma and bio sciences, 4: 812-820.
  • [2] Gomes J.R.B., Gomes P. 2005. Gas-phase acidity of sulfonamides: implications for reactivity and prodrug design. Tetrahedron, 61: 2705-2712.
  • [3] Özalp E.A.D. 2002. Farmakoloji. Nobel Tıp Kitabevleri, İstanbul, 1-804.
  • [4] Yousef F., Mansour O., Herbali J. 2018. Sulfonamides: Historical Discovery Development (Structure-Activity Relationship Notes). In-vitro In-vivo In-silico Journal, 1 (1): 1-15.
  • [5] Dragostin O.M.P, Lapuşcu F.G, Pânzariu A, Vasincu I.G, Profire L. 2013. Importance of Sulfonamide Moiety in Current and Future Theraphy. Revista medico-chirurgicala a Societatii de Medici si Naturalisti din Iasi, 117 (2): 558-564.
  • [6] Demiralay E.Ç., Basat D., Canbay H.S., Alsancak G., Uslu B. 2012. Determination of pKa values of opipramol in acetonitrile-water binary mixtures by using chromatographic and spectrophotometric Methods. Global Journal of Analytical Chemistry, 3 (11): 1-9.
  • [7] Rossotti J.C., Rossotti H. 1961. The Determination of Stability Constants. McGraw-Hill, New York, 1-425.
  • [8] Paul W.W., Lois E.W. 1966. Spectrophotometric determination of the acid dissociation constants of 3-hydroxypyridine. Analytical Biochemistry, 15 (3): 421-425.
  • [9] Demiralay E.Ç., Yılmaz H. 2012. Potentiometric pKa Determination of Piroxicam and Tenoxicam in Acetonitrile-Water Binary Mixtures. SDU Journal of Science,7 (1): 34-44.
  • [10] Benet L.Z., Goyan J.E. 1967. Potentiometric determination of dissociation constants. Journal of Pharmaceutical Sciences, 56 (6): 665-680.
  • [11] Sixma F.L.J., Wynberg H. 1964. A Manual of Physical Methods in Organic Chemistry. John Wiley & Sons, Inc., New York, 1-342.
  • [12] Kroflic A., Apelblat A., Bešter-Rogac M. 2012. Dissociation constants of parabens and limiting conductances of their ions in water. The Journal of Physical Chemistry B, 116 (4): 1385-1392.
  • [13] Rabenstein D.L., Sayer T.L. 1976. Determination of microscopic acid dissociation constants by nuclear magnetic resonance spectrometry. Analytical Chemistry, 48 (8): 1141-1146.
  • [14] Zimmerman I. 1982. Determination of pKa values from solubility data. International Journal of Pharmaceutics, 13 (1): 57-65.
  • [15] Horvath C., Melander W., Molnár I. 1977. Liquid chromatography of ionogenic substances with nonpolar stationary phases (Solvophobic Theory of Reversed Phase Chromatography, Part II). Analytical Chemistry, 49 (1): 142-154.
  • [16] Demiralay E.Ç., Alsancak G., Ozkan S.A. 2009. Determination of pKa values of nonsteroidal antiinflammatory drug-oxicams by RP-HPLC and their analysis in pharmaceutical dosage forms. Journal of Separation Science, 32 (17): 2928-2936.
  • [17] Beltran J.L., Sanli N., Fonrodona G., Barron D., Özkan A.G., Barbosa J. 2003. Spectrophotometric potentiometric and chromatographic pKa values of polyphenolic substances in water and acetonitrile water media. Analytica Chimica Acta, 484 (2): 253-264.
  • [18] Chung T.D., Kim H. 2001. Voltammetric determination of the pKa of various acids in polar aprotic solvents using 1,4-benzoquinone. Journal of Electroanalytical Chemistry, 498 (1-2): 209- 215.
  • [19] Tajc S.G., Tolbert B.S., Basavappa R., Mille B.L. 2004. Direct determination of thiol pKa by isothermal titration microcalorimetry. Journal of the American Chemical Society, 126 (34): 10508-10509.
  • [20] Fuguet E., Ràfols C., Bosch E., Roses M. 2009. Fast highthroughput method for the determination of acidity constants by capillary electrophoresis. Journal of Chromatography A, 1216 (17): 3646- 3651.
  • [21] Rosenberg L.S., Simons J., Schulman S.G. 1979. Determination of pKa values of N-heterocyclic bases by fluorescence spectrophotometry. Talanta, 26 (9): 867-871.
  • [22] Katzin L.I., Gulyas E. 1960. Dissociation constants of tartaric acid with the aid of polarimetry. Journal of Physical Chemistry, 64 (11): 1739-1741.
  • [23] Bunnett J.F., Nudelman N.S. 1969. Independent, Kinetic Method for Determining Acid Dissociation Constants in Methanol. Journal of Organic Chemistry, 34 (7): 2043-2046.
  • [24] Tehan B.G., Lloyd E.J., Wong M.G., Pitt W.R., Montana J.G. 2002. Estimation of pKa using semi empirical molecular orbital methods. Part 1: Application to phenols and carboxylic acids, QSAR, 21 (5): 457-472.
  • [25] Gran G. 1952. Determination of the equvalence points in potentiometric titrations. Part II, Analyst, 77: 661-671.
  • [26] Gran G. 1988. Equivalence volumes in potentiometric titrations. Analytica Chimica Acta, 206: 111-123.
  • [27] Levie R. 1997. Principles of quantitative chemical analysis. McGraw-Hill College Press, Singapore, 1-737.
  • [28] Yasuda M. 1959. Dissociation constants of some carboxylic acids in mixed aqueous solvents. Bulletin of the Chemical Society of Japan, 32: 429-432.
  • [29] Shedlovsky T. 1962. Electrolytes. Edited by Pesce B., Pergamon Press, NewYork, 1-455.
  • [30] Barbosa J., Barrón D., Beltrán J.L., Nebot V.S. 1995. PKPOT, a program for the potentiometric study of ionic equilibria in aqueous and non-aqueous media. Analytica Chimica Acta, 317: 75- 81.
  • [31] Sanli N., Sanli S., Özkan G., Denizli A. 2010. Determination of pKa Values of Some Sulfonamides by LC and LC-PDA Methods in Acetonitrile-Water Binary Mixtures. The Journal of the Brazilian Chemical Society, 21 (10): 1952-1960.
  • [32] Lin C.E., Chang C.C., Lin W.C.J. 1997. Migration behavior and separation of sulfonamides in capillary zone electrophoresis III. Citrate buffer as a background electrolyte. Journal of Chromatography A, 768: 105-112.
  • [33] Babić S., Horvat A.J.M., Pavlović D.M., Macan M.K. 2007. Determination of pKa values of active pharmaceutical ingredients. Trends in Analytical Chemistry, 26 (11): 1043-1061.
  • [34] Benet L.Z., Goyan J.E. 1967. Potentiometric determination of dissociation constants. Journal of Pharmaceutical Sciences, 56: 665-680.
  • [35] Albert A., Serjeant E.P. 1984. The Determination of Ionization Constants. Chapman and Hall Press, London, 1-216.
  • [36] Altun Y. 2004. Study of Solvent Composition Effects on the Protonation Equilibria of Various Anilines by Multiple Linear Regression and Factor Analysis Applied to the Correlation Between Protonation Constants and Solvatochromic Parameters in Ethanol–Water Mixed Solvents. Journal of Solution Chemistry, 33 (5): 479-497.
  • [37] Polster J., Lachmann H. 1989. Spectrometric Titrations: Analysis of Chemical Equilibria. VCH Weinheim Press, NewYork, 1-433.
  • [38] Maren T.H., Conroy C.W. 1993. A New Class of Carbonic Anhydrase Inhibito. The Journal of Biological Chemist., 268 (35): 26233-26239.
  • [39] Völgyi G., Ruiz R., Box K, Comer J., Bosch E., Takács-Novák K. 2007. Potentiometric and spectrophotometric pKa determination of water-insoluble compounds: validation study in a new cosolvent system. Anal. Chim. Acta, 583 (2): 418-428.
  • [40] Qiang Z., Adams C. 2004. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Res., 38 (12): 2874-2890.
  • [41] Lin C.E., Chang C.C., Lin W.C. 1997. Migration behavior and separation of sulfonamides in capillary zone electrophoresis II. Positively charged species at low Ph. Journal of Chromatography A, 759 (1-2): 203-209.
  • [42] Ricci M.C., Cross R.F. 1993. Capillary electrophoresis seperation of sulphonamides and dihydrofolate reductase inhibitors. J. Microcol. Sep., 5: 207-215.
  • [43] Maren T.H., Conroy C.W.J. 1993. A new class of carbonic anhydrase inhibitor. Biol. Chem., 268, 26233.
  • [44] Guttmann V. 1960. Coordination Chemistry in Nonaqueous Solutions. Springer Press, New York, 1-174.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü