Co-La-B Katalizörünün Sentezlenmesi ve Yakıt Pilinde Kullanılması

Bu çalışmada, bir hidrojen jeneratörü tasarlamak için Co-La-B katalizörü kullanılarak katalizör miktarı, NaOHkonsantrasyonu, NaBH4 konsantrasyonu ve çözelti sıcaklığı gibi parametrelerin hidrojen üretim hızı üzerindekietkisi incelenmiştir. Hidrojen üretim reaksiyonu için aktivasyon enerjisi 40,3 kJ mol-1 olarak hesaplanmıştır. CoLa-B katalizörünün varlığında elde edilen hidrojen üretim sistemi kullanarak, polimer elektrolit membran yakıthücresi (PEMFC) yığını çalıştırılmıştır. Yerinde üretilen hidrojen, bir PEM yakıt pilinde kullanılarak o yakıt pilineait verim hesaplanmıştır. Üretilen hidrojenin zamanla akım ve gerilim üzerindeki değişimleri incelenmiştir.Yerinde üretilen hidrojenin tek hücreli PEM yakıt pilinde kullanılması ile akım ve gerilim değerlerinden, 0,65W’lık bir güç değeri hesaplanmıştır. PEM yakıt pili uygulamasında güce ve ideal voltaja göre ortalama verimdeğerleri sırasıyla %62 ve %79 olarak bulunmuştur. Elde edilen sonuçlardan, Co-La-B katalizörünün PEM yakıtpili uygulamaları için ideal bir katalizör olduğu söylenebilir.

Synthesis of Co-La-B Catalyst and Its Use in Fuel Cell

In this study, the effect of parameters such as catalyst amount, NaOH concentration, NaBH4 concentration and solution temperature on hydrogen production rate was investigated by using Co-La-B catalyst to design a hydrogen generator. The activation energy for the hydrogen production reaction was calculated as 40,3 kJ mol-1 . The polymer electrolyte membrane fuel cell (PEMFC) stack was run using the hydrogen generation system using the Co-La-B catalyst. Fuel cell efficiency was calculated by using in situ hydrogen produced in PEM fuel cell. The changes of hydrogen produced over current and voltage have been investigated. Using on-site hydrogen in a single-cell PEM fuel cell, a power value of 0,65 W was calculated from the current and voltage values. In PEM fuel cell application, average efficiency values according to power and ideal voltage were 62% and 79%, respectively. From the results, it can be said that the Co-La-B catalyst is an ideal catalyst for PEM fuel cell applications.

___

  • [1] Chen B., Chen S., Bandal H.A., Ntiamoah R.A., Jadhav A.R., Kim H. 2018. Cobalt nanoparticles supported on magnetic core-shell structured carbon as a highly efficient catalyst for hydrogen generation from NaBH4 hydrolysis. International Journal of Hydrogen Energy, 43 (19): 9296- 9306.
  • [2] Liu B.H., Li Z.P., Suda S. 2006. Nickel- and cobalt-based catalysts for hydrogen generation by hydrolysis of borohydride. Journal of Alloys and Compounds, 415 (1): 288-293.
  • [3] Nikolaidis P., Poullikkas A. 2017. A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews, 67: 597-611.
  • [4] Ouyang L., Liu J., Felderhoff M., Wang H., Zhu M. 2017. Enhancing the Regeneration Process of Consumed NaBH4 for Hydrogen Storage. Advanced Energy Materials, 7 (19): 1700299.
  • [5] Sen B., Kuyuldar E., Demirkıran B., Onal O.T., Şavk A. 2018. Highly efficient polymer supported monodisperse ruthenium-nickel nanocomposites for dehydrocoupling of dimethylamine borane. Journal of Colloid and Interface Science, 526: 480-486.
  • [6] Koska A., Toshikj N., Hoett S., Bernaud L., Demirci U.B. 2017. Volcano Plot for Bimetallic Catalysts in Hydrogen Generation by Hydrolysis of Sodium Borohydride. Journal of Chemical Education, 94 (8): 1163-1166.
  • [7] Izgi M.S., Şahin Ö., Baytar O., Saka C. 2019. Catalytic activity of cobalt-boron-fluoride particles with different solvent mediums on sodium borohydride hydrolysis for hydrogen generation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-12.
  • [8] Baytar O. 2018. Investigation of high-activity activated carbon-supported Co-Cr-B catalyst in the generation of hydrogen from hydrolysis of sodium borohydride. Acta Chimica Slovenica, 65 (2): 9.
  • [9] Kılınç D., Şahin Ö. 2019. Effective TiO2 supported Cu-Complex catalyst in NaBH4 hydrolysis reaction to hydrogen generation. International Journal of Hydrogen Energy, 44 (34): 18858- 18865.
  • [10] Fernandes R., Patel N., Miotello A., Filippi M. 2009. Studies on catalytic behavior of Co–Ni–B in hydrogen production by hydrolysis of NaBH4. Journal of Molecular Catalysis A: Chemical, 298 (1): 1-6.
  • [11] Patel N., Fernandes R., Miotello A. 2009. Hydrogen generation by hydrolysis of NaBH 4 with efficient Co–P–B catalyst: A kinetic study. Journal of Power Sources, 188: 411-420.
  • [12] Fernandes R., Patel N., Miotello A. 2009. Hydrogen generation by hydrolysis of alkaline NaBH4 solution with Cr-promoted Co–B amorphous catalyst. Applied Catalysis B: Environmental, 92 (1): 68-74.
  • [13] Ingersoll J.C., Mani N., Thenmozhiyal J.C., Muthaiah A. 2007. Catalytic hydrolysis of sodium borohydride by a novel nickel–cobalt–boride catalyst. Journal of Power Sources, 173 (1): 450- 457.
  • [14] Paskevicius M., Jepsen L.H., Schouwink P., Cerny R., Ravnsback D.B., Filinchuk Y., Dornheim M., Besenbacher F., Jensen T.R. 2017. Metal borohydrides and derivatives – synthesis, structure and properties. Chemical Society Reviews, 46 (5): 1565-1634.
  • [15] Dai H.-B., Gao L.L., Liang Y., Kang X.D., Wang P. 2010. Promoted hydrogen generation from ammonia borane aqueous solution using cobalt–molybdenum–boron/nickel foam catalyst. Journal of Power Sources, 195 (1): 307-312.
  • [16] Sezgin B., Caglayan D.G., Devrim Y., Steenberg T., Eroglu I. 2016. Modeling and sensitivity analysis of high temperature PEM fuel cells by using Comsol Multiphysics. International Journal of Hydrogen Energy, 41 (23): 10001-10009.
  • [17] Ersoyoglu A.S., Ata S., Dincer K., Önal G., Yılmaz Y. 2017. Modeling of the Effects of Cyclic Voltammetry (CV) Using Fuzzy Logic with Different Membership Functions for Proton Exchange Membrane Fuel Cell (PEM) with Polyvinyl Alcohol/Nano Silver (PVA/Ag). Nano Hybrids and Composites, 16: 67-72.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü