Tekstil Endüstrisi Atıksularının Sonlu Filtrasyon Sistemi ile Nanofiltrasyon ve Ters Ozmoz Membranları Kullanılarak Filtrasyonu

Mevcut çalışmada çeşitli nanofiltrasyon (NF) ve ters ozmoz (TO) membranları ile tekstil endüstrisi atıksularınınfiltrasyon performansları değerlendirilmiştir. Çalışmalar sonlu filtrasyon düzeneği ile farklı basınçlar altındayapılmıştır (10, 15, 20 ve 25 Bar). Test edilen nanofiltrasyon membranları NF90, NF270, NFTS40, NFXN45,NFDK ve NFDL’dir. Ters ozmoz membranları ise ROX201, ROBW30FR ve ROACM5’tir. Nanofiltrasyonmembranları için basınç başına en yüksek geçirgenlik NF270 membranı ile elde edilmiş olup bu değer 5,95L/(m2.h.Bar)’tır. Diğer nanofiltrasyon membranlarına nazaran NF270 ile daha yüksek geçirgenlik değerineulaşılmasına rağmen, geçirgenlikteki birim zamanda en yüksek azalma da bu membranda olmuştur. 15 bar basınçaltında başlangıç geçirgenlik değeri olan 12,41 L/(m2.h.Bar) 1 saatlik test süresi sonunda, 4,41 L/(m2.h.Bar)’adüşmüştür. Ters ozmoz membranlarında ise en yüksek geçirgenlik değeri ROACM5 membranı ile 2,96L/(m2.h.Bar) olarak tespit edilmiştir. En yüksek geçirgenlik düşüşü de yine ROACM5 membranındagözlemlenmiştir (hem 10 hem de 15 bar basınç için yaklaşık olarak 4,14 L/(m2.h.Bar)’dan 2,48 L/(m2.h.Bar)’a).Nanofiltrasyon membranları için en yüksek renk, iletkenlik ve KOİ giderimi, NF90 ile 4515 µS/cm iletkenlik; 518Pt-Co renk ve 119 mg/L KOİ giriş koşulları için sırasıyla >95%, >99% ve >97% olarak bulunmuştur. Daha yüksekiletkenlik giderimi istendiğinde ise ters ozmoz membranlarının kullanılması gerekmektedir. Test edilen ters ozmozmembranları için iletkenlik giderim yüzdeleri aynı atıksuda ROBW30FR, ROX201 ve ROACM5 için sırasıyla>97%, >98% ve >98%’dir.

Filtration of Textile Industry Wastewaters Using Dead End Filtration System with Nanofiltration and Reverse Osmosis Membranes

In this study, filtration performance of various nanofiltration and reverse osmosis membranes and textile industry wastewater were evaluated. The work was carried out under different pressures (10–15–20 and 25 Bar) with a dead end filtration system. The nanofiltration membranes tested were NF90, NF270, NFTS40, NFXN45, NFDK and NFDL. Reverse osmosis membranes are ROX201, ROBW30FR and ROACM5. The highest permeability per pressure for nanofiltration membranes was obtained with NF270 membrane, which is 5.95 L/(m2 .h.Bar). Although higher permeability was achieved with NF270 compared to other nanofiltration membranes, the highest reduction in permeability per unit time was also found in this membrane. The initial permeability value of 12.41 L/(m2 .h.Bar) under a pressure of 15 Bar decreased to 4.41 L/(m2 .h.Bar) after a 1 hour test period. In reverse osmosis membranes, the highest permeability value was determined as 2.96 L/(m2 .h.Bar) by ROACM5 membrane and the highest permeability decrease was observed again in ROACM5 membrane (approximately from 4.14 L/(m2 .h.Bar) to 2.48 L/(m2 .h.Bar) for both 10 and 15 Bar pressures). Highest color, conductivity and COD removal for nanofiltration membranes was obtained with NF90 membranes. The influent was contained 4515 µS / cm conductivity; 518 Pt-Co color and 119 mg / L COD , and >95% ,>99% and >97% removal efficiency were obtained, respectively. When higher conductivity removal is desired, reverse osmosis membranes are required The percent conductivity removal for the tested reverse osmosis membranes is >97%, >98% and >98% for ROBW30FR, ROX201 and ROACM5 in the same wastewater, respectively.

___

  • [1] Marcucci M., Nosenzo G., Capannelli G., Ciabatti I., Corrieri D., Ciardelli G. 2001. Treatment and reuse of textile effluents based on new ultrafiltration and other membrane technologies. Desalination, 138: 75-82.
  • [2] Amar N.B., Kechaou N., Palmeri J., Deratani A., Sghaier A. 2009. Comparison of tertiary treatment by nanofiltration and reverse osmosis for water reuse in denim textile industry. J. Hazard. Mater., 170: 111-117.
  • [3] Yurtsever A., Sahinkaya E., Aktaş Ö., Uçar D., Çınar Ö., Wang Z. 2015. Performances of anaerobic and aerobic membrane bioreactors for the treatment of synthetic textile wastewater. Bioresour. Technol., 192: 564-73.
  • [4] Asghar A., Raman A.A.A., Daud W.M.A.W. 2015. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review. J. Clean. Prod., 87: 826-838.
  • [5] Körbahti B.K., Turan K.M. 2016. Electrochemical Decolorization of Reactive Violet 5 Textile Dye using Pt/Ir Electrodes. J. Turkish Chem. Soc. Sect. A Chem., 3: 229-246.
  • [6] Sahinkaya E., Yurtsever A., Çınar Ö. 2017. Treatment of textile industry wastewater using dynamic membrane bioreactor : Impact of intermittent aeration on process performance. Sep. Purif. Technol., 174: 445-454.
  • [7] Ucar D., Armağan B. 2012. The removal of reactive black 5 from aqueous solutions by cotton seed shell. Water Environ. Res., 84: 323-327.
  • [8] Uçar D. 2014. Adsorption of Remazol Black RL and Reactive Yellow 145 from Aqueous Solutions by Pine Needles. Iran. J. Sci. Technol. Trans. Civ. Eng., 38: 147-155.
  • [9] Rodrigues C.S.D., Madeira L.M.,. Boaventura R.A.R. 2013. Treatment of textile dye wastewaters using ferrous sulphate in a chemical coagulation/flocculation process. Environ. Technol., 34: 719- 729.
  • [10] Van Der Bruggen B., Everaert K., Wilms D., Vandecasteele C. 2001. Application of nanofiltration for removal of pesticides, nitrate and hardness from ground water: Rejection properties and economic evaluation. J. Memb. Sci., 193: 239-248.
  • [11] Cheng S., Oatley D.L., Williams P.M., Wright C.J. 2012. Characterisation and application of a novel positively charged nanofiltration membrane for the treatment of textile industry wastewaters. Water Res., 46: 33-42.
  • [12] Lau W.-J., Ismail A.F.I. 2009. Polymeric nanofiltration membranes for textile dye wastewater treatment: Preparation, performance evaluation, transport modelling, and fouling control — a review. Desalination, 245: 321-348.
  • [13] Erswell A., Brouckaert C.J., Buckley C.A. 1988. The reuse of reactive dye liquors using charged ultrafiltration membrane technology. Desalination, 70: 157-167.
  • [14] Avlonitis S.A., Poulios I., Sotiriou D., Pappas M., Moutesidis K. 2008. Simulated cotton dye effluents treatment and reuse by nanofiltration. Desalination, 221: 259-267.
  • [15] Zahrim A.Y., Tizaoui C., Hilal N. 2011. Coagulation with polymers for nanofiltration pretreatment of highly concentrated dyes: A review. Desalination, 266: 1-16.
  • [16] APHA. 2005. Standart Methods for the Examination of Water and Wastewater., 21st ed., Washington DC. USA,.
  • [17] Mukherjee D., Kulkarni A., Gill W.N. 1996. Chemical treatment for improved performance of reverse osmosis membranes. Desalination, 104: 239-249.
  • [18] Balannec B., Vourch M., Rabiller-Baudry M., Chaufer B. 2005. Comparative study of different nanofiltration and reverse osmosis membranes for dairy effluent treatment by dead-end filtration. Sep. Purif. Technol., 42: 195-200.
  • [19] Suksaroj C., Heran M., Allegre C., Persin F. 2005. Treatment of textile plant effluent by nanofiltration and/or reverse osmosis for water reuse. Desalination, 178: 333-341.