Fenol Çözeltisinin Farklı Elektrotlar Kullanılarak Elektrooksidasyonu

Bu çalışmada toksik aromatik bir bileşik olarak bilinen fenolün BDD (Boron Doped Diamond), Ti/Pt ve MMO(Mixed Metal Oksit) elektrotları (Ti/RuO2-TiO2, Ti/RuO2-IrO2, Ti/IrO2-Ta2O5, Ti/Pt-IrO2) ile mineralizasyonuaraştırıldı. Mineralizasyon seviyesinin belirlenmesi amacıyla deneylerin başında ve ilerleyen sürelerindeelektrooksidasyona tabi tutulan fenol çözeltisinden örnekler alınıp TOK (Toplam Organik Karbon) değerleriölçüldü. Akım yoğunluğunun giderme verimine etkisini araştırmak için ise reaktöre üç farklı akım yoğunluğu (25mA/cm2, 75 mA/cm2 ve 125 mA/cm2) uygulandı. Akım yoğunluğu artışı ile mineralizasyon veriminin arttığıgörüldü. 125 mA/cm2akım yoğunluğunda BDD anot 180. dakikadan itibaren %100 giderme verimlerine ulaştı.Deneyin başında düşük performans gösteren Pt elektrotun 300 dakikalık deney süresi sonunda % 84 lük gidermeverimi ile, % 72-79 aralığında verim gösteren MMO anotların performansını geçtiği belirlendi. Çalışmanınsonunda BDD elektrotun fenolün sulardan gideriminde diğer anotlardan daha iyi performans gösterdiği görüldü.

Electrooxidation of Phenol Solution Using Several Electrodes

In this study, mineralization of phenol, known as toxic aromatic compound, was investigated using BDD (Boron Doped Diamond), Ti/Pt and MMO (Mixed Metal Oxide) electrodes (Ti/RuO2-TiO2, Ti/RuO2-IrO2, Ti/IrO2-Ta2O5, Ti/Pt-IrO2). In order to determine the level of mineralization, samples were taken from the phenol solution subjected to electrooxidation at the beginning and at the during of the experiments and TOC (Total Organic Carbon) values were measured. Three different current densities (25 mA/cm2 , 75 mA/cm2 and 125 mA/cm2 ) were applied to the reactor to investigate the effect of current density on the removal efficiency. BDD anode reached 100% removal efficiency from 180 minutes at 125 mA/cm2 current density. At the beginning of the experiment, the low performance Pt electrode showed 84-% removal efficiency at the end of the 300 minutes test period. MMO anodes exceeding the yield range. At the end of the study, BDD electrode performed better than other anodes in the removal of phenol from water.

___

  • [1] Iniesta J., González-Garcıá J., Expósito E., Montiel V., Aldaz A. 2001. Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure PbO2 anodes. Water Research, 35 (14): 3291-3300.
  • [2] Awad Y.M., Abuzaid N.S. 2000. The influence of residence time on the anodic oxidation of phenol. Separation and Purification Technology, 18 (3): 227-236.
  • [3] Li X., Cui Y., Feng Y., Xie Z., Gu J.-D. 2005. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Research, 39 (10): 1972- 1981.
  • [4] Yavuz Y., Koparal A.S. 2006. Electrochemical oxidation of phenol in a parallel plate reactor using ruthenium mixed metal oxide electrode. Journal of Hazardous Materials, 136 (2): 296-302.
  • [5] Yang X., Zou R., Huo F., Cai D., Xiao D. 2009. Preparation and characterization of Ti/SnO2–Sb2O3–Nb2O5/PbO2 thin film as electrode material for the degradation of phenol. Journal of Hazardous Materials, 164 (1): 367-373.
  • [6] Li M., Feng C., Hu W., Zhang Z., Sugiura N. 2009. Electrochemical degradation of phenol using electrodes of Ti/RuO2–Pt and Ti/IrO2–Pt. Journal of Hazardous Materials, 162 (1): 455-462.
  • [7] Verschueren K. 1977. Handbook of Environmental Data on Organic Chemicals. Wiley.
  • [8] Abuzaid N.S., Nakhla G.F. 1996. Effect of solution pH on the kinetics of phenolics uptake on granular activated carbon. Journal of Hazardous Materials, 49 (2): 217-230.
  • [9] Nakhla G.F., Al‐Harazin I.M. 1993. Simplified analysis of biodegradation kinetics of phenolic compounds by heterogeneous cultures. Environmental Technology, 14 (8): 751-760.
  • [10] Chiou C.-H., Juang R.-S. 2007 Photocatalytic degradation of phenol in aqueous solutions by Prdoped TiO2 nanoparticles. Journal of Hazardous Materials, 149 (1): 1-7.
  • [11] Adán C., Bahamonde A., Fernández-García M., Martínez-Arias A. 2007. Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation. Applied Catalysis B: Environmental, 72 (1): 11-17.
  • [12] Barakat M.A., Tseng J.M., Huang C.P. 2005. Hydrogen peroxide-assisted photocatalytic oxidation of phenolic compounds. Applied Catalysis B: Environmental, 59 (1): 99-104.
  • [13] Matsumura Y., Nunoura T., Urase T., Yamamoto K. 2000. Supercritical water oxidation of high concentrations of phenol,” Journal of Hazardous Materials, 73 (3): 245-254.
  • [14] Nakui H., Okitsu K., Maeda Y., Nishimura R. 2007. Effect of coal ash on sonochemical degradation of phenol in water. Ultrasonics Sonochemistry, 14 (2): 191-196.
  • [15] Can O.T. 2015. Removal of TOC from fertilizer production wastewater by electrooxidation. Desalination and Water Treatment, 53 (4).
  • [16] Duan X., Ma F., Yuan Z., Chang L., Jin X. 2013. Electrochemical degradation of phenol in aqueous solution using PbO2 anode. Journal of the Taiwan Institute of Chemical Engineers, 44 (1): 95-102.
  • [17] Song S., Zhan L., He Z., Lin L., Tu J., Zhang Z., Chen J. 2010. Mechanism of the anodic oxidation of 4-chloro-3-methyl phenol in aqueous solution using Ti/SnO2–Sb/PbO2 electrodes. Journal of Hazardous Materials, 175 (1): 614-621.
  • [18] Cañizares P., Díaz M., Domínguez J.A., García-Gómez J., Rodrigo M.A. 2002. Electrochemical Oxidation of Aqueous Phenol Wastes on Synthetic Diamond Thin-Film Electrodes. Industrial & Engineering Chemistry Research, 41 (17): 4187-4194.
  • [19] Martínez-Huitle C.A., Brillas E. 2009. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review. Applied Catalysis B: Environmental, 87 (3): 105-145.
  • [20] Polcaro A.M., Vacca A., Palmas S., Mascia M. 2003. Electrochemical treatment of wastewater containing phenolic compounds: oxidation at boron-doped diamond electrodes. Journal of Applied Electrochemistry, 33 (10): 885-892.
  • [21] Zhou M., Särkkä H., Sillanpää M. 2011. A comparative experimental study on methyl orange degradation by electrochemical oxidation on BDD and MMO electrodes. Separation and Purification Technology, 78 (3): 290-297.
  • [22] Simond O., Schaller V., Comninellis C. 1997. Theoretical model for the anodic oxidation of organics on metal oxide electrodes. Electrochimica Acta, 42 (13): 2009-2012.
  • [23] Panizza M., Cerisola G. 2009. Direct And Mediated Anodic Oxidation of Organic Pollutants. Chemical Reviews, 109 (12): 6541-6569.
  • [24] Comninellis C. 1994. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochimica Acta, 39 (11): 1857-1862.