Çift yönlü deprem yüklemeleri altında eksentrik binalar için yapısal hasarlara karşı bina performansını artırmak için farklı çapraz destek profilleri yerleşimlerinin analizi: Bir vaka çalışması

Çapraz Destek Profilleri (ÇDP), günümüzde özellikle eksantrik binaları deprem esnasında burulmaya karsı korumak için kullanılan yöntemlerden biridir. Bu yöntem, aktif / pasif Ayarlı Kütle Damperleri (AKD) gibi karmaşık kontrol sistemlerine kıyasla, mevcut ve yeni binalar için daha iyi bir sismik korumaya katkıda bulunmak için yaygın olarak kullanılır. Çünkü yapımı kolaydır ve uygulaması diğer yöntemlere göre daha ucuzdur. Bu nedenle, bu araştırmada, önceden belirlenmiş en iyi üç ÇDP yerleşimleri seçilerek, iki yönlü sismik yükler altında sismik analizleri, 1940'da El Centro, 1994'te North-Ridge ve Kocaeli 1999 deprem dataları altında yapılmıştır. Elde edilen sonuçlara göre ÇDP'ler yapıya yerleştirilirken Durum 3’teki gibi doğru bir mühendislik tasarım perspektifi ile birlikte yapıda burulma tepkilerini (yaklaşık olarak %30 ile %50 arasında) azaltarak yapı planındaki eksantrikliği önemli ölçüde ortadan kaldırabilirken, doğru tasarım vizyonu ile yerleştirilmeyen ÇDP'ler yani Durum 1 ve Durum 2’da olduğu gibi burulma etkilerini bazı yükleme durumları için azaltacak kadar başarılı olamamışlardır. Bu nedenle, yapısal tepkileri en aza indirmek için ÇDP’leri yapıya entegre etmek, doğru mühendislik perspektifi ile yapılmalıdır. Aksi takdirde ÇDP’ler yapıdaki burulma düzensizliği etkilerini azaltmadığı gibi binada burulmadan dolayı oluşabilecek yapısal hasar olasılığının da artmasına neden olabilmektedir.

Analysis of different cross-frame placements to enhance torsional irregular buildings against structural failure under earthquake bidirectional loadings: A case study

Cross bracing frames (CFs) are employed as traditional passive energy dissipating devices, which are placed into the moment-resisting frames of the Benchmark building picked for analysis purposes. These devices are widely used, easy to construct, and inexpensive to contribute better seismic protection for existing and new buildings than complex control systems like active/passive Tuned Mass Dampers (TMDs) and so on. Therefore, in this research, the best three-predetermined CFs placements are selected. The time history analyses are made under bi-directional seismic loads such as two orthogonal excitations of El Centro in 1940, North-Ridge in 1994, and Kocaeli, Turkey in 1999. In conclusion, obtained results find out that while CFs placements into the structure can be significantly eliminating the eccentricity in the structure plan by dissipating especially torsional responses (approximately between 30% and 50% decrease) with a right engineering design perspective like Case 3, they cannot be successful enough to reduce the torsional responses without the right design vision such as Case 1 and Case 2. Therefore, Integrating CFs placements to the structure for minimizing the structural response is not always comprehensive to make the structure durability against torsional irregularity unless placed with the right engineering decision.

___

  • [1] Arslan MH, Korkmaz HH. What is to be learned from damage and failure of reinforced concrete structures during recent earthquakes in Turkey? Eng Fail Anal 2007;14:1–22. doi:10.1016/j.engfailanal.2006.01.003.
  • [2] Gokdemir H, Ozbasaran H, Dogan M, Unluoglu E, Albayrak U. Effects of torsional irregularity to structures during earthquakes. Eng Fail Anal 2013;35:713–7. doi:10.1016/j.engfailanal.2013.06.028.
  • [3] Işık E, Özdemir M, Karaşin İB. Performance Analysis of Steel Structures with A3 Irregularities. Int J Steel Struct 2018;18:1083–94. doi:10.1007/s13296-018-0046-6.
  • [4] Šipoš TK, Hadzima-Nyarko M. Seismic risk of croatian cities based on building’s vulnerability. O. Akyürek / BEÜ Fen Bilimleri Dergisi 10 (2), 480-491, 2021
  • [5] Işik E, Işik MF, Bülbül MA. Web based evaluation of earthquake damages for reinforced concrete buildings. Earthq Struct 2017;13:387–96. doi:10.12989/eas.2017.13.4.387.
  • [6] Güler K, Celep Z. On the general requirements for design of earthquake resistant buildings in the Turkish Building Seismic code of 2018. IOP Conf. Ser. Mater. Sci. Eng., vol. 737, Institute of Physics Publishing; 2020, p. 012015. doi:10.1088/1757-899X/737/1/012015.
  • [7] Moon DS. Integrated Seismic Assessment and Design Of Plan-Irregular Structures. University of Illinois at Urbana-Champaign, 2012.
  • [8] Akyürek O. Lateral and Torsional Seismic Vibration Control for Torsionally Irregular Buildings. Florida Institute of Technology, 2019.
  • [9] Damjan M, Fajfar P. On the inelastic seismic response of asymmetric buildings under bi-axial excitation. Earthq Eng Struct Dyn 2005;34:943–63. doi:10.1002/eqe.463.
  • [10] Satheesh AJ, Jayalekshmi BR, Venkataramana K. Effect of in-plan eccentricity in vertically mass irregular RC framed buildings under seismic loads. Asian J Civ Eng 2019;20:713–26. doi:10.1007/s42107-019-00138-w.
  • [11] Akyürek O, Suksawang N, Hiong T. Vibration control for torsionally irregular buildings by integrated control system. Eng Struct 2019;201:109775. doi:10.1016/j.engstruct.2019.109775.
  • [12] Li C. Performance of multiple tuned mass dampers for attenuating undesirable oscillations of structures under the ground acceleration. Earthq Eng Struct Dyn 2000;29:1405–21. doi:10.1002/1096-9845(200009)29:9<1405::AID-EQE976>3.0.CO;2-4.
  • [13] Xu K, Igusa T. Dynamic characteristics of multiple substructures with closely spaced frequencies. Earthq Eng Struct Dyn 1992;21:1059–70. doi:10.1002/eqe.4290211203.
  • [14] Park J, Reed D. Analysis of uniformly and linearly distributed mass dampers under harmonic and earthquake excitation. Eng Struct 2001;23:802–14. doi:10.1016/S0141-0296(00)00095-X.
  • [15] Lavan O. Multi-objective optimal design of tuned mass dampers. Struct Control Heal Monit 2017;24:e2008. doi:10.1002/stc.2008.
  • [16] Gill D, Elias S, Steinbrecher A, Schröder C, Matsagar V. Robustness of multi-mode control using tuned mass dampers for seismically excited structures. Bull Earthq Eng 2017;15:5579–603. doi:10.1007/s10518-017-0187-6.
  • [17] Battistini AD, Wang WH, Helwig TA, Engelhardt MD, Frank KH. 2012. Comparison of the stiffness properties for various cross frame members and connections. Struct. Stab. Res. Counc. Annu. Stab. Conf., 244-257.
  • [18] Battistini AD. 2014. Stiffness and Fatigue Behavior of Cross Frames for Steel Bridge Applications. Doctoral Dissertation, University of Texas at Austin, Texas, USA.
  • [19] Emrah Erduran, Ryan KL. Effects of torsion on the behavior of peripheral steel-braced frame systems. Earthq Eng Struct Dyn 2010;40:491–507. doi:10.1002/eqe.
  • [20] Chen C-H, Lai J-W, Mahin SA. Seismic Performance Assessment of Concentrically Braced Frames. 13 World Conf Earthq Eng 2004:1–8. doi:10.1061/(ASCE)ST.1943-541X.0002276.
  • [21] Ülker M, Işık E, Ülker M. 2018. The Effect of Centric Steel Braced Frames with High Ductility Level on the Performance of Steel Structures. Fırat Univ Turkish J Sci Technol., 13: 61-64.
  • [22] Akyürek O. 2014. Betonarme Bina Performansina Dolgu Duvarlarin Etkisi (The effects of infill walls in RC building performance). Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Isparta.
  • [23] Aksoylu C, Sezer R. Investigation of precast new diagonal concrete panels in strengthened the infilled reinforced concrete frames. KSCE J Civ Eng 2018;22:236–46. doi:10.1007/s12205-017- 1290-6.
  • [24] Ohtori Y, Christenson RE, Spencer BF, Dyke SJ. Benchmark Control Problems for Seismically Excited Nonlinear Buildings. J Eng Mech 2004;130:366–85. doi:10.1061/(ASCE)0733- 9399(2004)130:4(366).
  • [25] Federal Emergency Management Agency (FEMA). FEMA 355F - State of the Art Report on Performance Prediction and Evaluation of Steel Moment-Frame Buildings. Fema-355F 2000;1:1–367.
  • [26] Chopra AK. Dynamics of Structures: Theory and Applications to Earthquake Engineering. vol. 23. Englewood Cliffs, N.J. : Prentice Hall; 2000. doi:10.1193/1.1586188.
  • [27] Helwig T, Engelhardt MD, Frank KH. Comparison of the Stiffness Properties for Various Cross O. Akyürek / BEÜ Fen Bilimleri Dergisi 10 (2), 480-491, 2021 Frame Members and Connections Comparison of the Stiffness Properties for Various Cross Frame Members and Connections 2012.
  • [28] Yura JA. Fundamentals of beam bracing. Eng Journal-American Inst Steel Constr 2001;38:11– 26.
  • [29] Society of Civil Engineers A. ASCE American Society of Civil Engineers Minimum Design Loads for Buildings and Other Structures This document uses both the International System of Units (SI) and customary units. 2006.
  • [30] AFAD ve Acil Durum Yönetimi Başkanlığı. Türkiye Bı̇na Deprem Yönetmelı̇ğı̇. vol. 30364. 2018.
  • [31] MathWorks, M. A. T. L. A. B. 2016. SIMULINK for technical computing. Available on https://www.mathworks.com/ 2016.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü