4-butoxybenzylidene-4’-butylaniline (BBBA) Sıvı Kristalinin Geniş Sıcaklık Aralığında İncelenmesi: Optik, Dielektrik, Kalorimetrik ve Kızılötesi Spektroskopik Analiz

Bu çalışmada nematik ve farklı smektik mezofazlar sergileyen alkyloxy benzylidene alkylanilines sınıfına ait Schiff bazlı 4-butoxybenzylidene-4’-butylaniline (BBBA) sıvı kristalinin bazı fiziksel özellikleri incelenmiştir. Literatürde BBBA sıvı kristali üzerine çalışmalar oldukça az ve yetersizdir. Bu amaçla, morfolojik özelliklerinin belirlenmesi için optik tekstürleri mezofaz bölgelerinde ve faz geçiş bölgelerinde incelenmiştir. Optik tekstür analizlerinden BBBA’nın sergilediği mezofazlarda ortaya çıkan desenler belirlenmiştir. Ayrıca, dielektrik ölçümler ısıtma ve soğutma durumları için ayarı ayrı incelenerek her iki durum için dielektrik anizotropinin her bir mezofaz bölgesinde nasıl davrandığı araştırılmıştır. Yapılan araştırmalarda ısıtma ve soğutma durumlarında faz geçişler için termal histerezisin varlığı ortaya konulmuştur. Sıvı kristalik özellik sergilediği sıcaklık aralığında birçok mezofazın ortaya çıktığı BBBA’nın kızılötesi spektroskopik ölçümleri gerçekleştirilerek molekülün temel titreşim modları analiz edilmiştir. Ayrıca, BBBA’nın diferansiyel tarama kalorimetrisi yöntemi ile kalorimetrik ölçümleri hem ısıtma hem de soğutma durumları için yapılarak faz geçiş sıcaklıkları ve faz aralığı belirlenmiştir. Elde edilen kalorimetrik sonuçlar dielektrik ölçümlerden elde edilenler ile kıyaslanmıştır. Birçok mezofazı sergilemesi ve hakkında literatürde yeterince çalışmanın olmaması dolayısıyla BBBA sıvı kristali bilimsel araştırmalarda üzerine daha fazla araştırma yapılması gereken bir sıvı kristaldir.

Examination of 4-butoxybenzylidene-4'-butylaniline (BBBA) Liquid Crystal in Wide Temperature Range: Optical, Dielectric, Calorimetric and Infrared Spectroscopic Analysis

In this study, some physical properties of Schiff-based 4-butoxybenzylidene 4'-butylaniline (BBBA) liquid crystal belonging to alkyloxy benzylidene alkylanilines class with nematic and different smectic mesophase were investigated. Studies on BBBA liquid crystal are very few and insufficient in the literature. Due to this case, optical textures were examined in mesophase regions and phase transition regions to determine morphological properties. Patterns emerging in the mesophase exhibited by BBBA were determined from the optical texture analysis. In addition, the dielectric measurements were examined separately for heating and cooling conditions, and how the dielectric anisotropy behaves in each mesophase region for both cases. In the researches, the existence of thermal hysteresis for phase transitions in heating and cooling conditions has been revealed. The infrared spectroscopic measurements of the BBBA, in which many mesophases emerge in the temperature range in which it exhibits liquid crystalline properties, were performed and the fundamental vibration modes of the molecule were analyzed. In addition, the calorimetric measurements of the BBBA with the differential scanning calorimetry method were made for both heating and cooling conditions, and phase transition temperatures and phase range were determined. The calorimetric results obtained were compared with those obtained from dielectric measurements. The BBBA liquid crystal is a liquid crystal that needs more research in scientific research due to the fact that it exhibits many mesophase and there are not enough studies in the literature.

___

  • [1] Demus D., Goodby J., Gray G.W., Spiess H. W., Vill V. 1998. Handbook of Liquid Crystals.Wiley-VCH, Weinheim, 1-2591.
  • [2] Blinov L.M. 2011. Structure and Properties of Liquid Crystals. Springer, Dordrecht, Heidelberg, London, New York, 1-458.
  • [3] Bendahou A., Khouba Z., Benabdallah T., Maschke U. 2018. Mesophase study of pure and doped cyanobiphenyl liquid crystals with salen-type systems. Liq Cryst., 45: 1312-1323.
  • [4] Archambeau S., Bock H., Seguy I. 2007. Organic solar cells with an ultra thin organized hole transport layer. J Mater Sci Mater Electron., 18 (9): 919-923.
  • [5] Matharu A.S., Jeeva S., Ramanujam P.S. 2007. Liquid crystals for holographic optical data storage. Chem Soc Rev., 36 (12): 1868-1878.
  • [6] Vertogen G., de Jeu W.H. 1988. Thermotropic Liquid Crystals, Fundamentals. Springer, Dordrecht, Heidelberg, London, New York, 1-325.
  • [7] Collings P.J., Hird M. 2017. Introduction to liquid crystals: Chemistry and physics. Taylor and Francis, London, 1-305.
  • [8] Rao J.V., Rao N.V.S., Pisipati V.G.K.M., Murty C.R.K. 1980. Density Studies in N-(p-n- Butoxybenzylidene)-p-n-Butylaniline. Berichte der Bunsengesellschaft für Phys Chemie, 84: 1157-1160.
  • [9] Deschamps J., Trusler J.P.M., Jackson G. 2008. Vapor pressure and density of thermotropic liquid crystals: MBBA, 5CB, and novel fluorinated mesogens. J Phys Chem B., 112 (13): 3918-3926.
  • [10] Diaconu I., Melniciuc-Puicǎ N., Dorohoi D., Aflori M. 2007. Birefringence dispersion of N-(4- methoxybenzylidene)-4-butylaniline (MBBA) determined from channeled spectra. Spectrochim Acta - Part A Mol Biomol Spectrosc., 68 (3): 536-541.
  • [11] Sudhadevi Antharjanam P.K., Prasad E. 2010. Nematic to smectic texture transformation in MBBA by in situ synthesis of silver nanoparticles. New J Chem., 34 (3): 420-430.
  • [12] Xu Z.D., He Y.N., Guo M.C., Wang X.G. 2007. Alternating current electric-field-induced tunable microstructures and electrohydrodynamic convection properties observed in azo-dye-doped MBBA liquid crystal cells. J Appl Phys., 102 (2): 67-80.
  • [13] De Luca G., Emsley J.W., Lesage A., Merlet D. 2012. The structures and conformations of mesogenic molecules in the pre-transitional region of the isotropic phase: 5OCB and MBBA and their mixtures. Liq Cryst., 39 (2): 211-219.
  • [14] Bertocchi M.J., Ratchford D.C., Casalini R., Wynne, James H., Lundin, J.G. 2018. Electrospun Polymer Fibers Containing a Liquid Crystal Core: Insights into Semiflexible Confinement. J Phys Chem C, 122: 16964-16971.
  • [15] Celebre B.G., De Luca G., Ferrarini A. 1997. Short-and long-range contributions to the ordering of rigid planar solutes dissolved in a 55wt% ZLI1132+ EBBA nematic mixture. Mol Phys., 92 (6): 1039-1050.
  • [16] Mitra S., Mukhopadhyay R., Venu K. 2000. Molecular motions in liquid crystal BBBA (4O.4): QENS study. Chem Phys., 261: 149-156.
  • [17] Lebovka N.I., Lisetski L.N., Goncharuk A.I. 2013. Phase transitions in smectogenic liquid crystal 4-butoxybenzylidene- 4′-butylaniline (BBBA) doped by multiwalled carbon nanotubes. Phase Transitions, 86: 463-476.
  • [18] Kleman M., Lavrentovich O.D. 2004. Soft Matter Physics: An Introduction. Springer New York, New York, 1-63.
  • [19] de Gennes P.G., Prost J., Pelcovits R. 1995. The Physics of Liquid Crystal. Phys Today, 48 (5): 70-71.
  • [20] Singh S., Dunmur P.D.A. 2002. Nematic Liquid Crystals: Elastostatics and Nematodynamics. In: Liquid Crystals, Edited by Khoo I.C., Wiley-Interscience, New Jersey, 174-220.
  • [21] Khoo I.C., Wu S.T. 1993. Optics and Nonlinear Optics of Liquid Crystals. World Scientific, Singapur, 1-440.
  • [22] Avci N., Borshch V., Sarkar D.D. 2013. Viscoelasticity, dielectric anisotropy, and birefringence in the nematic phase of three four-ring bent-core liquid crystals with an L-shaped molecular frame. Soft Matter., 9: 1066-1075.
  • [23] Mamuk A.E., Nesrullajev A., Mukherjee P.K. 2017. Refractive and birefringent properties of 4- alkyl-4′-oxycyanobiphenyls at direct and reverse phase transitions. Mol Cryst Liq Cryst., 648 (1): 168-181.
  • [24] Özden P., Mamuk A.E., Avcı N. 2019. Investigation of the viscoelastic properties of 4-propoxy- biphenyl-4-carbonitrile. Liq Cryst., 46 (15): 2190-2200.
  • [25] Dierking I. 2003. Textures of Liquid Crystals. Wiley-VCH, Weinheim, 1-233.
  • [26] Oswald P., Pieranski P. 2005. Smectic and Columnar Liquid Crystals. Taylor & Francis, Boca Raton, 1-711.
  • [27] Doi M. 2013. Soft Matter Physics. Oxford University Press, Oxford, 1-257.
  • [28] Kleman M., Lavrentovich O.D. 2004. Soft Matter Physics: An Introduction. Springer, New York, 1-63.
  • [29] Heng M., De-Heng S., Jun H., Yu-Feng P. 2009. Simulation study on terahertz vibrational absorption in liquid crystal compounds. Chinese Phys B., 18: 1085-1088.
  • [30] Smith G.W., Gardlund Z.G. 1973. Liquid crystalline phases in a doubly homologous series of benzylideneanilines textures and scanning calorimetry. J Chem Phys., 59: 3214-3228.
  • [31] Robertson J.H. 1980. Textures of liquid crystals by D. Demus and L. Richter. Acta Crystallogr Sect A., 36 (6): 1096-1096.
  • [32] Demus D., Diele S., Grande S., Sackmann H. 1983. Polymorphism In Thermotropic Liquid Crystals. In: Advances in Liquid Crystals edited by Brown, G.H., Vol: 6, Academic Press, New York, San Francisco, London, 1-107.
  • [33] Rao J.V., Murty C.R.K. 1985. Dielectric Studies In N-(P-N-Butoxybenzylidene) P-N- Butylandine. Phase Transitions, 5: 139-144.
  • [34] Rao J.V., Murty C.R.K. 1985. Ultrasonic Investigations of N- (P-N-Pentyloxybenzylidene) P-N- Butylaniline. Phase Transitions, 5: 145-150.
  • [35] de Jeu W.H., Lathouwers T.W., Bordewijk P. 1974. Dielectric Properties of di-n-Heptyl Azoxybenzene in the Nematic and in the Smectic-A Phases. Phys Rev Lett., 32: 40-43.
  • [36] de Jeu W.H., Goossens W.J.A., Bordewijk P. 1974. Influence of smectic order on the static dielectric permittivity of liquid crystals. J Chem Phys., 61: 1985-1989.
  • [37] Vries A.D. 1970. Evidence for the Existence of More Than One Type of Nematic Phase. Mol Cryst Liq Cryst., 10 (1-2): 31-35.
  • [38] Mamuk A.E., Nesrullajev A. 2016. Refractive and birefringent properties and order parameter of nematic liquid crystal at the direct and reverse nematic ↔ isotropic liquid phase transition. J Optoelectron Adv Mater., 18 (11-12): 928-937.
  • [39] Hosaka S., Tozaki K.I., Hayashi H., Inaba H. 2003. Effect of magnetic field on the phase transitions of EBBA by means of a high-resolution and super-sensitive DSC. Phys B Condens Matter., 337: 138-146.
  • [40] Avadanei M., Perju E., Cozan V., Bruma M. 2014. Phase transitions of a monotropic azomethine liquid crystal investigated by ATR-FTIR spectroscopy. Phase Transitions, 87: 243-254.
  • [41] Martínez-Felipe A., Imrie C.T., Ribes-Greus A. 2013. Study of structure formation in side-chain liquid crystal copolymers by variable temperature fourier transform infrared spectroscopy. Ind Eng Chem Res., 52: 8714-8721.
  • [42] Osiecka N., Galewski Z., Juszyńska-Gałązka E., Massalska-Arodź M. 2016. Studies of reorganization of the molecules during smectic A–smectic C phase transition using infrared spectroscopy and generalized two-dimensional correlation analysis. J Mol Liq., 224: 677-683.
  • [43] Singh S., Singh H., Srivastava A. 2016. Study of phase transitions in a bent-core liquid crystal probed by infrared spectroscopy. Vib Spectrosc., 86: 24-34.
  • [44] Enomoto S., Ozaki Y., Kuramoto N. 1993. Comparative Study of Langmuir-Blodgett Films of Three Kinds of Dyes Containing a 2-[[4′-(Mono- or dialkylamino)phenyl- or naphthyl]azo]-N- methylbenzothiazolium Chromophore by Infrared, Visible Absorption, and Resonance Raman Spectroscopies. Langmuir., 9 (11): 3219-3224.
  • [45] Fernsler J.G., Glaser M.A., Shao R. 2017. Aggregation-driven, re-entrant isotropic phase in a smectic liquid crystal material. Liq Cryst., 44 (5): 769-783.
  • [46] Papadopoulos P., Grigoriadis C., Haase N. 2011. Dynamics of Structure Formation in a Discotic Liquid Crystal by Infrared Spectroscopy and Related Techniques. J Phys Chem B., 115 (50): 14919-14927.
  • [47] Smith G.W. 1990. Study of Formation, Phase Behavior, and Microdroplet Size of a Polyurethane- based Polymer-dispersed Liquid Crystal. Mol Cryst Liq Cryst Inc Nonlinear Opt., 180: 201-222.
  • [48] Smith G.W., Vaz N.A. 1988. The relationship between formation kinetics and microdroplet size of epoxy-based polymer-dispersed liquid crystals. Liq Cryst., 3: 543-571.
  • [49] Alexe-Ionescu A.L., Barberi R., Bonvent J.J., Giocondo M. 1996. Nematic surface transitions induced by anchoring competition. Phys Rev E - Stat Physics, Plasmas, Fluids, Relat Interdiscip Top, 54: 529-535.
  • [50] Soltani T., Marcerou J.P., Othman T. 2013. Thermal hysteresis at the phase transition in liquid crystalline materials. Liq Cryst., 40: 165-171.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü