Bir Ortak Kontrol Devresi ile Çok Kaynaklı Enerji Hasadı Tasarımı

Bu makalede ortak bir kontrol devresi ile çok kaynaklı enerji hasadı mimarisi sunulmaktadır. Çoklu enerji kaynağı olarak termoelektrik jeneratörü (TEG), mikrobiyal yakıt hücresi (MFC) ve güneş hücresi (PV) kullanılmıştır. Önerilen sistem ile tüm enerji kaynaklarının yüke voltaj sağlanması amaçlanmıştır. Sistemin başka bir güç kaynağına ihtiyaç duyulmaksızın kendi gücünü sağlanması gerçekleşmiştir. Bir 0.13μm CMOS teknolojisi kullanarak sonuçlar elde edilmiştir. Sonuçlar önerilen sistemin geleneksel güç devrelerinden daha etkili olduğunu gösterir. Çıkış voltajı 1.58V olarak ayarlanmıştır.

Multi-Source Energy Harvesting Architecture With A Common Control Circuit

AbstractMultiple source energy harvesting architecture with a common control circuit is presented in this paper. Asmultiple energy sources, thermoelectric generator (TEG), microbial fuel cell (MFC) and solar cell (PV) aredeployed. With the proposed architecture, all sources allow to provide supply voltage to the load and self-startingi.e., no need of external power sources is achieved. Results are carried out in a 0.13μm CMOS process and showthe effectiveness of the proposed architecture over the conventional converter circuits. The output is regulated to1.58V.

___

  • [1] Carli D., Brunelli D., Benini L., Ruggeri M. 2011. An effective multisource energy harvester for low power applications, Proc. Design, Automation & Test in Europe (DATE), pp. 1-6.
  • [2] Qian F., Umaz R., Gong Y., Li B., Wang L. 2016. Design of a shared-stage charge pump circuit for multi-anode microbial fuel cells, IEEE International Symposium on Circuits and Systems (ISCAS), pp. 213-216.
  • [3] Shi C., Miller B., Mayaram K., Fiez T. 2011. A multiple-input boost converter for low-power energy harvesting, IEEE Trans. Circuits Syst. II Exp. Briefs, 58 (12): 827-831.
  • [4] Umaz R., Garett C., Qian F., Li B., Wang L. 2017. A power management system for multi-anode benthic microbial fuel cells, IEEE Trans. on Power Electronics, 32 (5): 3562-3570.
  • [5] Bandyopadhyay S., Chandrakasan A.P. 2012. Platform architecture for solar thermal and vibration energy combining with MPPT and single inductor, IEEE J. Solid-State Circuits, 47 (9): 2199-2215.
  • [6] Colomer-Farrarons J., Miribal-Catala P. Siz-Vela A., Samitier J. 2011. A Multi harvested selfpowered system in a low-voltage low-power technology, EEE Trans. Ind. Electronics, 58 (9): 4250-4263.
  • [7] Tan Y.K., Panda S.K. 2011. Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes, IEEE Trans. Ind. Electronics, 58 (9): 4424-4435.
  • [8] Umaz R., Wang L. 2017. An Energy Combiner Design for Multiple Microbial Energy Harvesting Sources, In Proceedings of the on Great Lakes Symposium on VLSI 2017 (GLSVLSI ’17), pp. 443-446.
  • [9] Lhermet H., Condemine C., Plissonier M., Salot R., Audebert P., Rosset M. 2008. Efficient power management circuit: From thermal energy harvesting to above-IC micro battery energy storage, IEEE J. Solid State Circuits, 43 (1): 246-255.
  • [10] Ramadass Y.K., Chandrakasan A.P. 2011. A battery-less thermoelectric energy harvesting interface circuit with 35 mV startup voltage, IEEE J. Solid State Circuits, 46 (1): 333-341.
  • [11] Carlson E., Strunz K., Otis B. P. 2010. A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting, IEEE J. Solid State Circuits, 45 (4): 741-750.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü