Temperature Control of a Small Volume-Thermal System in Heating and Cooling Processes with Arduino

Sıcaklık kontrolünün önemli bir uygulama alanı malzemelerin mekanik karakteristiklerinin tanımlanmasındaki kullanımıdır. Bu çalışmada sıcaklık kontrollü bir ısıtma ve soğutma sisteminin tasarımı sunulmaktadır. Çok geniş sıcaklık aralıklarında çalışmaya izin veren bu sistem bir çekme-basma test cihazı için tasarlanmıştır. Çekme- basma deneylerinin yapıldığı haznenin sıcaklığı testler sırasında istenilen sıcaklık aralıklarında tutulması amaçlanmıştır. Bu termal sistem yalıtılmış metal hazne, kuru rezistans, güç ayarlayıcı, ısıl çift, hava fanı, röle, yükseltici, mikro kontrolcü ve bilgisayar gibi temel elektrik ve mekanik elemanlardan oluşmaktadır. Krojenik sıcaklıklarda soğutma işlemi için ise bu elemanlara ek olarak solenoid valf, DC motor sürücü ve sıvı azot tankı sisteme eklenmiştir. Haznenin içinin sıcaklığı geri beslemeli bir sistem ile kontrol edilmektedir. Bu geri beslemeli kontrol sistemi sıcaklığı bir K-tipi ısıl çift ile ölçmekte olup hataları telafi etmek için tablo destekli PID, P ve on- off kontrolcülerin bir kombinasyonu kullanılmaktadır. Soğutma kısmında ise sıcaklık kontrolü valf karakteristiğine uygun olarak oransal kontrol işlemi ile yapılmaktadır. Bu sitemde basit, ucuz ve programlanması kolay olduğu için mikro kontrolcü olarak Arduino işlemci kartı kullanılmıştır. Bilgisayar ve deney düzeneği arasındaki tüm haberleşmeler bu kart aracılığı ile gerçekleştirilmiştir. Gerçek zamanlı uygulamalar için MATLAB programı üzerinde yazılan programlar hem haberleşmede hem de kontrolde büyük bir başarı göstermiştir. Bu çalışmada, yalıtılmış haznenin sıcaklığı +450 oC ila –100 oC arasında kolay bir şekilde tutulabilmiştir. Bazı deneysel çalışmaların uygulanmasıyla, kullanıcı tanımlı değişik sıcaklık profilleri başarılı bir şekilde test cihazı üzerinde gerçekleştirilmiş ve sonuçlar ısıtma ve soğutma sisteminin matematiksel modelinden elde edilen sonuçlar ile karşılaştırılmıştır. Oluşan sapmaların çekme-basma test cihazı uygulaması için kabul edilebilir bir seviyede oldukları görülmüştür.

Temperature Control of a Small Volume-Thermal System in Heating and Cooling Processes with Arduino

An important field of the temperature control is the identification of physical features of materials at a wide range of operating temperatures. This paper presents the design of a temperature controlled thermal system in heating and cooling processes. This system will be used in a tension-compression testing machine. During the tensile experiments, the aim is to keep the inside of the chamber at a desired temperature. The thermal system consists of an isolated metal box, dry resistance, power regulator, thermocouple, air fun, relay, amplifier, microcontroller and computer. For the cooling processes in cryogenic temperatures, the system has also a solenoid valve, DC motor driver and a liquid nitrogen tank. The temperature of the chamber with a small bulk is controlled by a feedback system. This feedback system measures the temperature with a K-type thermocouple and uses a combination of a table-supported PID, P and on-off controllers to compensate the errors between the reference and measured temperatures. In this setup, Arduino is used as a microcontroller because it is simple, inexpensive and easy to program. This card supplies all communication between the computer and the experimental setup by a program written on MATLAB with Arduino package for real-time applications. According to the experimental results, the temperature of the insulated chamber can be easily maintained between +450 oC and –100 oC. The user defined different temperature profiles were successfully performed on the setup and the outcomes were compared with themathematical model in the heating and cooling processes. The deviations from the desired temperatures were found to be at an acceptable level for the applications on a tension-compression testing machine.

___

  • [1] Turunen T. 2006. Electrical Floor Heating Systems in China Shenyang Jianzhu. University Tampere Polytechnic, Bachelor’s Thesis, 44s, China.
  • [2] Wu D.W., Wang R. 2006. Combined Cooling Heating and Power: A Review. Progress in Energy and Combustion Science, 32 (5-6): 459-495.
  • [3] Agrawal P.C. 1989. A Review of Passive Systems for Natural Heating and Cooling of Buildings. Solar & Wind Technology, 6 (5): 557-567.
  • [4] Haye E. 2013. Industrial Solutions for Inductive Heating of Steels. Uleå University of Technology Department of Engineering Sciences and Mathematics,114s, Master Thesis. Sweden.
  • [5] Ryckaert V.G., Claes J.E., Van Impe J.F. 1999. Model-Based Temperature Control in Ovens. Journal of Food Engineering, 39 (1): 47-58.
  • [6] Srisertpol J., Supot P. 2010. Model Reference Adaptive Temperature Control of The Electromagnetic Oven Process in Manufacturing Process. Proceedings of the 9th WSEAS International Conference on Signal Processing, Robotics and Automation. World Scientific and Engineering Academy and Society (WSEAS). pp: 57-61.
  • [7] Dhananchezian M., Pradeep K. 2010. Experimental Investigation of Cryogenic Cooling by Liquid Nitrogen in the Orthogonal Machining of Aluminum 6061-T6 Alloy. International Journal of Machining and Machinability of Materials, 7(3-4): 274-285.
  • [8] Lizon J. 2010. Liquid Nitrogen Pre-cooling of Large Infrared Instrument at ESO, SPIE Astronomical Telescopes and Instrumentation, International Society for Optics and Photonics, 77393F-77393F.
  • [9] Schoeman R. 2012. Design and Development of an Automated Temperature Controller for Curing Ovens, Vaal University of Technology, Electronic Engineering. Master Thesis, Vanderbijlpark, 102s, South Africa.
  • [10] Appelblad A. 2014. Development of a Temperature Controlled Cell for Surface Enhanced Raman Spectroscopy for in Situ Detection of Gases. Umeå University Department of Physics, Master Thesis, 53s, Sweden.
  • [11] Lute P., Dolf V. 1995. Optimal Indoor Temperature Control Using a Predictor. IEEE Control Systems, 15 (4): 4-10.
  • [12] Jiang W., Xuchu J. 2012. Design of an Intelligent Temperature Control System Based on the Fuzzy Self-tuning PID. International Symposium on Safety Science and Engineering in China, (ISSSE), 43: 307-311.
  • [13] Ding S., Wenhui Li. 2013. Temperature Monitoring System Based on PLC. International Journal Electrical Engineering and Computer Science, 11 (12): 7251-7258.
  • [14] Bolat E. 2007. Real Time Temperature Control of Oven Using Matlab-SIMULINK. Proceedings of the 11th WSEAS International Conference on Systems, Agios Nikolaos, Crete Island, Greece, pp: 424-429.
  • [15] Krishnamurthi K., Thapa S., Kothari L., Prakash A. 2015. Arduino Based Weather Monitoring System. International Journal of Engineering Research and General Science, 3(2): 452-458.
  • [16] Ayuba Y. 2016. Temperature Control and Data Acquisition Method for Factory Using LabVIEW. International Journal of Computer Engineering & Technology (IJCET), 7 (2): 1-14.
  • [17] Zareh S., Kambiz O. 2009. The Design of PID Controller for a Thermal System with Large TimeDelay. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 3 (8): 1023-1027.