Mekanik Alaşımlama Yöntemi ile Üretilen Nanoyapılı Al66Co20Cu14 Tozlarının Termal ve Mikroyapısal Özellikleri

Bu çalışmada, Al66Co20Cu14 alaşımı elementel tozlarından mekanik alaşımlama (MA) yöntemi ile üretilmiştir.Farklı öğütme aşamalarında MA ile üretilen alaşımın mikroyapısal değişiklikleri ve termal davranışları,diferansiyel termal analiz (DTA), X-ışını kırınımı (XRD) ve taramalı elektron mikroskobu (SEM) enerji yayılımlıX-ışını analizi (EDX) kombinasyonu ile araştırılmıştır. XRD sonuçları Al2Cu, Al13Co4 gibi yeni intermetalikfazların oluşumunu göstermiştir. Öğütme süresine bağlı olarak tane büyüklüğü kırılma ve deformasyon sonucuküçülerek 25.2 nm olarak ölçülmüştür. 100 saatlik öğütme ile üretilen numune için faz geçiş aktivasyon enerjilerihesaplandı ve sonuçlar üretilen alaşımın termal kararlılığa sahip olduğunu göstermiştir. Ayrıca, numunelerimmikroyapısı ve toz bileşenlerin alaşım içerisindeki dağılımı, SEM/EDX sonuçlarına göre öğütme süresi arttıkçatane boyutunda küçülme ve daha homojen bir yapı oluştuğunu bulunmuştur.

Thermal and Microstructural Properties of Nanostructured Al66Co20Cu14 Powders Produced by Mechanical Alloying Method

In this study, Al66Co20Cu14 alloy is produced from its elemental powders by mechanical alloying (MA) method. Microstructural changes and thermal behavior of the alloy produced by MA in different grinding stages were investigated by a combination of differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy diffusion X-ray analysis (EDX). XRD results showed the formation of new intermetallic phases, such as Al2Cu, Al13Co4. Depending on the milling time, the grain size was reduced to 25.2 nm as a result of the fracture and deformation. For the sample produced with 100 hours of milling, the phase transition activation energies were calculated and the results showed that the alloy produced had thermal stability. In addition, the microstructure of the samples and the distribution of the powder components in the alloy, according to the SEM/EDX results, it was found that as the grinding time increased, the grain size decreased and a more homogeneous structure was formed.

___

  • [1] Agostinho Jamshi L.C.L., Rodbari R.J. 2018. Evolution of the Phases of Quasicrystalline Alloys Icosahedral/decagonal Al62.2Cu25.3Fe12.5/Al65Ni15Co20 and Oxidative Behaviour. Journal of the Chilean Chemical Society, 63 (2): 3928-3933.
  • [2] Mohammeda K.S., Naeemb H.T., Iskaka S.N. 2016. Study of the Feasibility of Producing Al–Ni Intermetallic Compounds by Mechanical Alloying. The Physics of Metals and Metallography, 117 (8): 795-804.
  • [3] Stoloff N., Liu C., Deevi S. 2000. Emerging Applications of Intermetallics. Intermetallics, 8: 1313-1320.
  • [4] Yamauchi I., Ohmori M., Ohnaka I. 2000. Metastable Phase Formation by Chemical Leaching of Al–Co–Cu Ternary Alloys. Journal of Alloys and Compounds, 299: 269-275.
  • [5] Inoue A. 1998. Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Progress in Materials Science, 43 (5): 365-520.
  • [6] Viet N.H., Oanh N.T.H., Quynh P.N.D., Lap T.Q., Kim J.S. 2015. Thermal stability of amorphous Al-Fe-Y prepared by mechanical alloying. Materials Science Forum, 804: 271-274.
  • [7] Gogebakan M. 2004. Thermal stability and mechanical properties of Al-based amorphous alloys. Journal of Materials Processing Technology, 153-154: 829-832.
  • [8] Avar B., Gogebakan M., Tarakci M., Gencer Y., Kerli S. 2013. Microstructural investigations of rapidly solidified Al-Co-Y alloys. Advances in Materials Science and Engineering, 163537.
  • [9] Mukhopadhyay N.K., Murthy G.V.S., Murty B.S., Weatherly G.C. 2002. A n investigation on the transformation of the decagonal phase to a B2 phase in Al–Cu–Co alloy during mechanical milling. Journal of Alloys and Compounds, 342: 38-41.
  • [10] Yamauchi I., Ohmori M., Ohnaka I. 2000. Rapid solidification and mechanical alloying of Al– Co–Cu ternary alloys for chemical leaching. Journal of Alloys and Compounds, 299: 276-282.
  • [11] Bogdanowicz W. 2003. Influence of thermal treatment on the subgrain parameters and microstructure of two-subgrain Al-Cu-Co single quasicrystals. Materials Science and Engineering A 346: 328-335.
  • [12] Mishra S.S., Pandey S.K., Yadav T.P., Srivastava O.N. 2017. Influence of chemical leaching on Al-Cu-Co decagonal quasicrystals. Materials Chemistry and Physics, 200: 23-32.
  • [13] Roik O.S., Galushko S.M., Samsonnikov O.V., Kazimirov V.P., Sokolskii V.E. 2011. Structure of liquid Al–Cu–Co alloys near the quasicrystal-forming range. Journal of Non-Crystalline Solids, 357: 1147-1152.
  • [14] Inoue A., 1990. An-Pang Tsai and Tsuyoshi Masumoto: Stable decagonal and icosahedral quasicrystals. Journal of Non-Crystalline Solids, 117-118: 824-827.
  • [15] Zhang L.M., Gille P. 2004. Solidification study of Al–Co–Cu alloys using the Bridgman method. Journal of Alloys and Compounds, 370: 198-205.
  • [16] Murty B.S., Koteswara Rao R.V., Mukhopadhyay N.K. 2004. Stability of quasicrystalline phase in Al–Cu–Fe, Al–Cu–Co and Al–Pd–Mn systems by high energy ball milling. Journal of NonCrystalline Solids, 334-335: 48-51.
  • [17] Suryanarayana C., Norton M.G. 1998. X-ray Diffraction: A Practical Approach. Plenum Press, New York.
  • [18] Mohammed K.S., Naeem H.T., Iskak S.N. 2016. Study of the Feasibility of Producing Al–Ni Intermetallic Compounds by Mechanical Alloying. The Physics of Metals and Metallography, 117 (8): 795-804.
  • [19] Kursun C., Gogebakan M. 2015. Characterization of nanostructured Mg–Cu–Ni powders prepared by mechanical alloying. Journal of Alloys and Compounds, 619: 138-144.
  • [20] Gogebakan M., Kursuna C., Eckert J. 2013. Formation of new Cu-based nanocrystalline powders by mechanical alloying technique. Powder Technology, 247: 172-177.
  • [21] Bogdanowicz W. 2002. Two-subgrain single quasicrystals Al–Cu–Co alloy growth and characterisation. Journal of Crystal Growth, 240: 255-266.
  • [22] Kissinger H.E. 1957. Reaction kinetics in differential thermal analysis. Analytical Chemistry, 29: 1702-1706.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü