KOMPOZİT ZIRH TASARIMI VE BALİSTİK DİRENCİNİN İNCELENMESİ

Bu çalışmada lamine kompozit zırh tasarımı ve balistik direncinin incelenmesi amaçlanmıştır. Kompozit zırh yapısında mermi karşılama ve arka destek yüzeyi olarak 5 mm kalınlığında AISI 304 paslanmaz çelik plaka, mermi darbe şok enerjisini absorbe etmek amacıyla ara katman olarak 6 mm kalınlığında kevlar kompozit levha kullanılmıştır. Ayrıca sertlik artışı sağlamak suretiyle mermi deformasyonunu artırmak için çelik plakalara borlama işlemi de uygulanmıştır. Çalışma kapsamında araç zırhı için tam balistik koruma sağlayabilecek yeni bir zırh tasarımı ve prototip üretimi gerçekleştirilmiş ve balistik performansı değerlendirilmiştir. Balistik testler 7.62 mm kalibreli kurşun çekirdekli ve yaklaşık 800 m/s mermi hızına sahip G3 piyade tüfeği ile 30 m mesafeden ve tek atış esasına göre gerçekleştirilmiştir. Son olarak borlanmış çelik ön ve arka destek katmanları arasında bulunan çift kevlar plakalar ile tam balistik koruma sağlanmıştır.

DESIGN OF A COMPOSITE ARMOR AND INVESTIGATION OF ITS BALLISTIC RESISTANCE

This study aimed to design a laminated composite armor and to examine its ballistic resistance. In the designed composite armor structure, a 5 mm thick AISI 304 stainless steel plate was used as a bullet impact and back support surface. A 6 mm thick kevlar composite plate was also used as an interlayer to absorb the impact shock energy of the bullet. In addition, the boriding process was applied to the steel plates to increase the bullet's deformation by increasing the hardness. Hence, the surface hardness of the AISI 304 plate has been increased approximately 7 times by the boronizing process. It has been observed that this process significantly affected bullet deformation. Within the scope of the study, various armor designs and the production of prototypes that could provide complete ballistic protection for vehicle armor were carried out, and hence their ballistic performances were evaluated. Ballistic tests were performed on a single-shot basis from a distance of 30 m with a 7.62 mm lead core G3 rifle with a bullet velocity of approximately 800 m/s. It has been observed that a single layer of non-boronized steel (A) and boronized steel (B) could not provide sufficient ballistic resistance. In addition, the ballistic limit conditions with full penetration could be provided using the A+K+A laminated row ZM-3 armor model with a single layer of kevlar plate between the boron-free steel front and back support layer. Finally, it has been determined that the B+K+K+B laminated sequential armor model specified with ZM-4 completely stopped the G3 bullet. From this, it was concluded that the boriding process increased the bullet’s deformation. The kevlar plate could also be used in such armor systems as a laminate to absorb the bullet’s kinetic energy. Finally, full ballistic protection was achieved with double kevlar plates between the boronized steel front and back support layers.

___

  • 1. Arslan, M., Karimzadehkhoei, M., Sireli, G.K., Coskun, O.K., Sert, M. & Timur, S. (2022). Investigating Growth of Iron Borides with the Formation of Monolithic Fe2B Layer on AISI 304 Stainless Steel via Cathodic Reduction and Thermal Diffusion-Based Boriding. Journal of Materials Engineering and Performance, 31(4), 3274-3286.
  • 2. Arteaga-Hernandez, L.A., Cuao-Moreu, C.A., Gonzalez-Rivera, C.E., Alvarez-Vera, M., Ortega-Saenz, J.A. & Hernandez-Rodriguez, M.A.L. (2021). Study of boriding surface treatment in the tribological behavior of an AISI 316L stainless steel. Wear, 477, 203825.
  • 3. Ash, R.A. (2016). Vehicle Armor. Lightweight Ballistic Composites: Military and Law-Enforcement Applications. Elsevier Ltd., Woodhead Publishing, New York.
  • 4. Başaran, B. (2007). Computational Analysis Of Advanced Composite Armor Systems (Master's thesis, Orta Doğu Teknik Üniversitesi).
  • 5. Bitlisli, B. (2019). Zırhlı Araçlarda Kullanılan Kompozit Zırh Malzemelerinin Balistik Performanslarının İncelenmesi (Master's thesis, Bursa Uludağ Üniversitesi).
  • 6. Campos-Silva, I., Hernández-Ramirez, E.J., Contreras-Hernández, A., Rosales-Lopez, J.L., Valdez-Zayas, E., Mejía-Caballero, I. & Martínez-Trinidad J. (2021). Pulsed-DC powder-pack boriding: Growth kinetics of boride layers on an AISI 316 L stainless steel and Inconel 718 superalloy. Surface and Coatings Technology, 421, 127404.
  • 7. Candan, C. (2005). Zırh Teknolojilerindeki Gelişmeler. Zırh Teknolojileri Semineri, 10-11 Mart, Ankara, Milli Savunma Bakanlığı Arge ve Teknoloji D. Bşk.lığı
  • 8. Carlucci, D.E. & Jacobson, S.S. (2008). Ballistics: Theory and Design of Guns and Ammunition. CRC Press. p. 310. ISBN 978-1-4200-6618-0.
  • 9. Demircioğlu, T.K., Candan, C. & Kasım, İ.A. (2011). Organik Matrisli Kompozit Malzeme Kullanılarak Oluşturulan Hibrit Zırh Plakasının Terminal Balistik Özelliklerinin İncelenmesi. I. Ulusal Ege Kompozit Malzemeler Sempozyumu, 17-19 Kasım, İzmir.
  • 10. Fernández-Fdz, D. & Zaera, D. (2008). A New Tool Based on Artificial Neural Networks for the Design of Lightweight Ceramic–Metal Armour Against High-Velocity Impact of Solids. International Journal of Solids and Structures, 45, 6369-6383.
  • 11. Flores-Johnson, E.A. & Saleh, M. & Edwards, L. (2011). Ballistic performance of multi-layered metallic plates impacted by a 7.62-mm APM2 projectile. International Journal of Impact Engineering, 38(12), 1022-1032.
  • 12. Gençer, Y. (2016). Zırh Malzemesi Olarak Borür/Metal Tabakalı Kompozitlerin Üretilmesi ve Karakterizasyonu. Tübitak projesi, Proje No. 213M166.
  • 13. Günen, A., Kurt, B., Orhan, N. & Kanca, E. (2014). The investigation of corrosion behavior of borided AISI 304 austenitic stainless steel with nanoboron powder. Protection of Metals and Physical Chemistry of Surfaces, 50(1), 104-110.
  • 14. Güneş, R. (2015). Fonksiyonel Kademelendirilmiş Sandviç Plakaların Balistik Darbe Etkisi Altında Lineer Olmayan Mekanik Analizleri. Tübitak projesi, Proje No: 112M917.
  • 15. Hazell, P.J. (2016). Armour Materials, Theory and Design (First Edition). CRC Press, Taylor & Francis Group, New York.
  • 16. Jinzhu, L., Liansheng, Z. & Fenglei, H. (2017). Experiments and Simulations of Tungsten Alloy Rods Penetrating into Alumina Ceramic/603 Armor Steel Composite Targets. Int. Journal of Impact Engineering, 101, 1-8.
  • 17. Kayali, Y., Büyüksağiş, A. Güneş, I. & Yalçin, Y. (2013). Investigation of corrosion behaviors at different solutions of boronized AISI 316L stainless steel. Protection of Metals and Physical Chemistry of Surfaces, 49(3), 348-358.
  • 18. Lo´pez-Puente, J., Arias, A., Zaera, R. & Navarro, C. (2005). The effect of the thickness of the adhesive layer on the ballistic limit of ceramic/metal armours. An experimental and numerical study. International Journal of Impact Engineering, 32, 321–336.
  • 19. Medvedovski, E. (2010). Ballistic performance of armour ceramics: Influence of design and structure. Part 1. Ceramics International, 36 (7), 2103-2115.
  • 20. Meyers, M.A. (1994). Dynamic Behavior of Materials. John Wiley & Sons Inc, New York, pp. 597.
  • 21. Rahman, N.A., Abdullah, S., Zamri, W.F.H., Abdullah, M.F., Omar, M.Z. & Sajuri Z. (2016). Ballistic Limit of High-Strength Steel and Al7075-T6 Multi-Layered Plates Under 7.62-mm Armour Piercing Projectile Impact. Latin American Journal of Solids and Structures, 13, 1658-1676.
  • 22. URL-1, (2020). https://ayam.com.tr/arastirma/turkiyede-son-5-yilda-yasanan-gelismeler-savunma-sanayi-2015-2020/”
  • 23. Übeyli, M., Yıldırım, R.O. & Ögel, B. (2007). On the comparison of the ballistic performance of steel and laminated composite armor. Materials and Design, 28, 1257–1262.
  • 24. Übeyli, M., Deniz, H., Demir, T., Ögel, B., Gürel, B. & Keleş, Ö. (2011). Ballistic impact performance of an armor material consisting of alümina and dual phase steel layers. Materials & Design, 32 (3), 1565-1570.
  • 25. Ünaler, E. (2005). Development And Characterization Of Light-Weight Armor Materials (Master's thesis, İzmir İleri teknoloji Enstitüsü).
  • 26. Ziylan, A. (2001). Savunma Nereden Nereye Türkiye’de Savunma Sanayii Tarihçesi. Ulusal Strateji Dergisi,1-7. https://www.inovasyon.org/images/makaleler/pdf/AZ.Savunma%20Nereden%20Nereye.pdf Son erişim tarihi: 20 Şubat 2023.