DOMATESTE BULUNAN KAROTENOİDLERDEN OLAN LİKOPENİN PROBİYOTİK BAKTERİLER İLE ETKİLEŞİMLERİ

İnsanların doğal ve besleyici gıdalara olan ilgisi son yıllarda iyice artırmıştır. Günümüzde meyve ve sebzeler sadece beslenme amacının dışında hastalıklardan korunmak, sağlıklı yaşamak, ve tedavi edici özellikleri de göz önüne alınarak tüketilmektedir. Bu nedenle meyve ve sebzeler, içerikleri bakımından da tercih edilmektedir. Domatesten (Solanum lycopersicum) adını alan likopen, başta domates olmak üzere çeşitli bitkilerde bulunan kırmızı renkli karotenoid bir pigmenttir. Likopen in vitro ortamlarda güçlü bir antioksidan özellik gösterir, in vivo ortamlarda ise DNA, protein ve lipitlerin oksidasyonuna karşı koruyucu olmasının yanı sıra kanser tedavisinde apoptozu indüklemek, DNA hasarını azaltmak, oksidatif stresi önlemek, metastazı azaltmak ve kanser hücre siklusunu bozmak gibi çok hedefli aktiviteleri de bulunmaktadır. Lactobacillus acidophilus ve Lacticaseibacillus rhamnosus, probiyotikler arasında çok çalışılan, popüler mikroorganizmalar arasındadır. Özellikle sindirim sisteminde, Lactobacillus acidophilus ve Lacticaseibacillus rhamnosus gibi probiyotik bakterilerin varlığı, bağırsak florasını olumlu yönde etkileyerek sindirimi kolaylaştırabilir ve bağışıklık sisteminin güçlenmesine yardımcı olabilir. Bu probiyotiklerin yararlı etkileri, bitkisel kaynaklı bileşiklerle ve vücudumuzdaki faydalı mikroorganizmalarla etkileşimleri sayesinde artabilir. Bu çalışmanın amacı insan diyetinde yer alan meyve ve sebzelerde doğal olarak bulunan ve birçok yararlı etkisiyle birlikte likopenin insan sağlığı için önemli olan probiyotik bakteriler Lacticaseibacillus rhamnosus ve Lactobacillus acidophilus üzerine etkilerini araştırmaktır. Çalışmada, probiyotik bakteriler üzerinde etkileşim gösteren likopenin bakteriyel gelişim kinetiği, bakteriyel otoagregasyon, bakteriyel yüzey hidrofobisitesi ve mukus adezyon testi üzerine araştırma yapılmıştır. Çalışma sonuçları, likopenin probiyotik bakterilerin yüzey hidrofobisitesinde ve mukus adezyon testinde önemli bir değişikliğe sebep olmadığını, otoagregasyon özellikleri üzerinde doza bağlı artışların olduğunu göstermiştir.

INTERACTIONS OF LYCOPENE, A CAROTENOID FOUND IN TOMATO, WITH PROBIOTIC BACTERIA

People's interest in natural and nutritious foods has increased in recent years. Today, fruits and vegetables are consumed not only for nutritional purposes, but also for protection from diseases, healthy living, and therapeutic properties. For this reason, fruits and vegetables are also preferred in terms of their content. Lycopene, named after tomato (Solanum lycopersicum), is a red carotenoid pigment found in various plants, especially tomatoes. Lycopene shows strong antioxidant properties in vitro, and in vivo, in addition to being protective against oxidation of DNA, proteins and lipids, it also has multi-targeted activities such as inducing apoptosis, reducing DNA damage, preventing oxidative stress, reducing metastasis and disrupting cancer cell cycle in cancer treatment. Lactobacillus acidophilus and Lacticaseibacillus rhamnosus are among best researched and popular microorganisms among probiotics. Especially in the digestive system, the presence of probiotic bacteria such as Lactobacillus acidophilus and Lacticaseibacillus rhamnosus can positively affect the intestinal flora, facilitate digestion and help strengthen the immune system. The beneficial effects of these probiotics may be enhanced by their interaction with plant-derived compounds and beneficial microorganisms in our body. Thus, the aim of this study is to investigate the effects of lycopene, which is naturally found in fruits and vegetables in the human diet and has many beneficial effects, on probiotic bacteria Lacticaseibacillus rhamnosus and Lactobacillus acidophilus, which are important for human health. For this, we investigated the effects of lycopene on bacterial growth kinetics, bacterial autoaggregation, bacterial surface hydrophobicity and mucus adhesion of the probiotic bacteria. The results showed that lycopene did not cause a significant change in the surface hydrophobicity and mucus adhesion of probiotic bacteria. On the other hand, there were dose-related increases on the autoaggregation properties of these probiotic bacteria. In conclusion, it has been observed that different concentrations of lycopene may have different effects on probiotic bacteria. The results also support the hypothesis that carotenoids may influence the physiological effects of probiotic bacteria in a dose-dependent manner.

___

  • 1. Alander, M., Korpela, R., Saxeline, M., Vilpponen Salmela, T., Matilla Sandholm, T. & Wright, A. (1997). Recovery of Lacticaseibacillus rhamnosus GG from human colonic biopsies, Letters in Applied Microbiology, 24, 363–364.
  • 2. Alp, D. & Ertürkmen, P. (2017). Probiyotik olarak kullanılan Lactobacillus spp. suşlarının kolesterol düşürücü etkileri ve olası mekanizmalar. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 108-113.
  • 3. Cadenas, E. & Packer, L. (1996). Handbook of antioxidants. Marcel Dekker. Inc. New York.
  • 4. Charalampopoulos, D., Pandiella, S.S. & Webb, C. (2002). Growth studies of potentially probiotic lactic acid bacteria in cereal‐based substrates. Journal of applied microbiology, 92(5), 851-859.
  • 5. Collins, J.K., Thornton, G. & Sullivan, G.O. (1998). Selection of probiotic strains for human applications. International Dairy Journal, 8, 487-490.
  • 6. Çakır, İ. (2003). Lactobacillus ve Bifidobakterlerde bazı probiyotik özelliklerin belirlenmesi. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 86 s.
  • 7. Celebioglu, H.U., Delsoglio, M., Brix, S., Pessione, E. & Svensson, B. (2018). Plant polyphenols stimulate adhesion to ıntestinal mucosa and ınduce proteome changes in the probiotic Lactobacillus acidophilus NCFM. Molecular Nutrition & Food Research, 62(4), 1700638.
  • 8. Çomak-Göçer, E.M.Ç., Ergin, F. & Küçükçetin, A. (2016). Sindirim sistemi modellerinde probiyotik mikroorganizmaların canlılığı. Akademik Gıda, 14 (2), 158-165.
  • 9. Dunne, C., O’Mahony, L., Murphy, L., Thornton, G., Morrissey, D., O’Halloran, S., Feeney, M., Flynn, S., Fitzgerald, G., Daly, C., Kiely, B., O’Sullivan, G.C., Shanahan, F. & Collins, J.K. (2001). In vitro selection criteria for probiotic bacteria of human origin: Correlation with in vivo Findings. The American Journal of Clinical Nutrition, 73, 386S-92S.
  • 10. Erem, F., Küçükçetin, A. & Certel, M. (2013). Bacillus türlerinin probiyotik olarak değerlendirilmesi. gıda, 38 (4), 247-254.
  • 11. Gandomi, H., Farhangfar, A., Akhondzadeh Basti, A., Misaghi, A. & Noori, N. (2019). Auto and co-aggregation, hydrophobicity and adhesion properties of Lactobacillus plantarum strains isolated from Siahmazgi traditional cheese. Food & Health, 2(1), 1-5.
  • 12. Giovanelli, G., Zanoni, B., Lavelli, V. & Nani, R. (2002). Water sorption, drying and antioxidant properties of dried tomato products. Journal of Food Engineering, 52, 135-41.
  • 13. Giovannucci, E. (2002). A review of epidemiologic studies of tomatoes, lycopene and prostate cancer. Experimental Biology and Medicine, 227, 852-859.
  • 14. Grossman, A.R., Lohr, M. & Im, C.S. (2004). Chlamydomonas reinhardtii in the landscape of pigments. Annual Review of Genetics; 38, 119–173.
  • 15. Gülgör, G. & Özçelik, F. (2014). Bakteriyosin Üreten Laktik Asit Bakterilerinin Probiyotik Amaçlı Kullanımı, Akademik Gıda, 12(1), 63–68.
  • 16. Hakala, S.H. & Heinonen, I.M. (1994). Chromatographic purification of natural lycopene. Journal of Agricultural and Food Chemistry, 42, 13141316.
  • 17. Hemaiswarya, S., Raja, R., Ravikumar, R. & Carvalho, I.S. (2013). Mechanism of action of probiotics. Brazilian archives of Biology and technology, 56(1), 113-119.
  • 18. Hobson, G. & Grierson, D. (1996). Tomato, 403-414, Biochemistry of Fruit Ripening, Seymour, G.B., Taylor, J.E. and Tucker, G.A. (Eds.), Chapman and Hall, London.
  • 19. Izquierdo, E., Horvatovich, P., Marchioni, E., Aoude‐Werner, D., Sanz, Y. & Ennahar, S. (2009). 2‐DE and MS analysis of key proteins in the adhesion of Lactobacillus plantarum, a first step toward early selection of probiotics based on bacterial biomarkers. Electrophoresis, 30(6), 949-956.
  • 20. Jankovic, I., Ventura, M., Meylan, V., Rouvet, M., Elli, M. & Zink, R. (2003). Contribution of aggregation promoting factor to maintenance of cell shape in Lactobacillus gasseri 4B2. Journal of Bacteriology 185, 3288–3296.
  • 21. Karadas, F., Suraı, P., Grammenıdıs, E., Sparks, N.H.C. & Acamovıc, T. (2006). Supplementation of the maternal diet with tomato powder and marigold extract: Effects on the antioxidant system of the developing quail. British Poultry Science, 47, 200-208.
  • 22. Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N. & Fakiri, E.M. (2013). Health benefits of probiotics: A Review. ISRN Nutrition, 481651, 1-7.
  • 23. Koroglu. E. & Celebioglu H.U. (2019). In vitro Interactions of Quercetin, One of Plant Flavonoids, With Probiotic Bacteria L. acıdophilus LA-5 and L. rhamnosus GG, International Marmara Science and Social Sciences Congress (Spring) 2019, 422-428
  • 24. Kos, B., Suskovic, J., Vukovic, S., Simpraga, M., Frece, J. & Matosic, S. (2003). Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. Journal of Applied Microbiology, 94(6), 981-987.
  • 25. Kumari, A., Angmo, K., Monika, S. & Bhalla, T.C. (2018). Functional and technological application of probiotic L. casei PLA5 in fermented soymilk. International Food Research Journal, 25(5), 2164-2172.
  • 26. Laparra, J.M. & Sanz, Y. (2009). Comparison of in vitro models to study bacterial adhesion to the intestinal epithelium. Letters in Applied Microbiology, 49(6), 695-701.
  • 27. Mousavi, Z.E., Mousavi, S.M., Razavi, S.H., Emam-Djomeh, Z. & Kiani, H. (2011). Fermentation of pomegranate juice by probiotic lactic acid bacteria. World Journal of Microbiology and Biotechnology, 27(1), 123-128.
  • 28. Önal, D., Beyatlı, Y. & Aslım, B. (2005). Probiyotik bakterilerin epitel yüzeylere yapışması. Orlab On-Line Mikrobiyoloji Dergisi, 3(9), 1-10.
  • 29. Önal, D. (2010). Geleneksel Türk peynirlerinde propiyonik asit bakteri türlerinin belirlenmesi ve bazı probiyotik özelliklerinin araştırılması. Doktora Tezi, Biyoloji, Gazi Üniv. Fen Bilimleri Enstitüsü, Ankara.
  • 30. Ozkan, G., Günal-Köroğlu, D., Karadag, A., Capanoglu, E., Cardoso, S.M., Al-Omari, B., Calina, D., Sharifi-Rad, J. & Cho, W.C. (2023). A mechanistic updated overview on lycopene as potential anticancer agent. Biomedicine & Pharmacotherapy, 161, 114428.
  • 31. Parker, R.S. (1996). Absorption, metabolism and transport of carotenoids. FASEB Journal, 10, 542–551.
  • 32. Periago MJ, Rincón F, Agüera MD, Ros G. (2004) Mixture approach for optimizing lycopene extraction from tomato and tomato products. Journal of Agricultural and Food Chemistry, 52(19), 5796-5802.
  • 33. Pradhan, D., Mallappa, R.H. & Grover, S. (2020). Comprehensive approaches for assessing the safety of probiotic bacteria. Food Control, 108, 106872.
  • 34. Rodríguez-Sánchez, S., Fernández-Pacheco, P., Seseña, S., Pintado, C. & Palop, M.L. (2021). Selection of probiotic Lactobacillus strains with antimicrobial activity to be used as biocontrol agents in food industry. LWT, 111142.
  • 35. Rojas, M. & Conway, P.L. (1996). Colonization by lactobacilli of piglet small intestinal mucus. Journal of Applied Bacteriology, 81, 474–480.
  • 36. Sahin, K., Sahin, N. & Kucuk, O. (2010). Lycopene and chemotherapy toxicity, Nutrition and Cancer, 62, 988-995.
  • 37. Satyanarayana, T., Johri, B.N. & Das, S.K. (Eds.) (2019). Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications: Volume 1. Microbial Diversity in Normal & Extreme Environments. Springer.
  • 38. Sakoui, S., Derdak, R., Addoum, B., Pop, O.L., Vodnar, D.C., Suharoschi, R. & El Khalfi, B. (2022). The first study of probiotic properties and biological activities of lactic acid bacteria isolated from Bat guano from Er-rachidia, Morocco. LWT, 159, 113224.
  • 39. Sharma, S.K. & Le Maguer, M. (1996). Lycopene in tomatoes and tomato pulp fractions. Italian Journal of Food Science, 2, 107-113.
  • 40. Shete, V. & Quadro, L. (2013). Mammalian metabolism of betacarotene: gaps in knowledge. Nutrients, 5 (12),4849-68.
  • 41. Sui, Y., Liu, J., Liu, Y., Wang, Y., Xiao, Y., Gao, B. & Zhu, D. (2021). In vitro probiotic characterization of Lactobacillus strains from fermented tangerine vinegar and their cholesterol degradation activity. Food Bioscience, 39, 100843.
  • 42. Tannock, G.W. (1999). Analysis of the intestinal microflora: a renaissance. Antonie Van Leeuwenhoek 76, 265–278.
  • 43. Tapıero, H., Townsend, D.M. & Tew, K.D. (2004). The role of carotenoids in the prevention of human pathologies. Biomedicine & Pharmacotherapy, 58(2), 100-110.
  • 44. Uymaz, B. (2010). Probiyotikler ve kullanım alanları. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 16(1), 95–104.
  • 45. Van Tassell, M.L. & Miller, M.J. (2011). Lactobacillus adhesion to mucus. Nutrients, 3(5), 613-636.
  • 46. Vasapollo, G., Longo, L., Rescio, L. & Ciurlia, L. (2003). Innovative supercritical CO2 extraction of lycopene from tomato in the presence of vegetable oil as co-solvent. Journal of Supercritical Fluids, 1-10.
  • 47. Wan, L.Y.M., Chen, Z.J., Shah, N.P. & El-Nezami, H. (2016). Modulation of intestinal epithelial defense responses by probiotic bacteria. Critical reviews in food science and nutrition, 56(16), 2628-2641.
  • 48. Yaping, Z., Suping, Q., Wenli, Y, Zheng, X., Hong, S., Side, Y. &Dapu, W. (2002). Antioxidant activity of lycopene extracted from tomato paste towards trichloromethyl peroxyl radical CCl3O2. Food Chemistry, 77(2), 209-212.
  • 49. Yürümez, E.Y. & Aydın Osmanağaoğlu, Ö.T.D. (2011). Gayta örneklerinden izole edilen bazı laktik asit bakterilerinin probiyotik özellikleri (Doctoral dissertation, Ankara Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı).