Mikrokristalin selüloz ve odun unu ilaveli Polihidroksibütirat (PHB) kompozitlerinin solvent yöntemiyle hazırlanması ve karakterizasyonu

Petrol türevli materyallerin doğada yok olma süreleri ve çevreye olan etkileri nedeniyle alternatif ürünlere yönelme ihtiyacı ortaya çıkmıştır.  Bu durum, biyopolimer materyallerin gelişmesine ivme kazandırmıştır. Doğada kolayca bozunan bu polimerlerin mekanik özelliklerinin düşük olması, destek materyalleri ile kullanımını yaygınlaştırmıştır. Bu çalışmada, biyopolimer olarak laboratuvar ortamında solvent casting yöntemi ile sentezlenen polihidroksibütirat (PHBs) ve ticari olarak satın alınan polihidroksibütirat (PHBt), farklı oranlarda oranında odun unu (OU) ve mikro kristalin selüloz (MKS) ile desteklenerek biyopolimer film tabakaları elde edilmiştir. Elde edilen biyopolimerler üzerinde (scanning electron microscope) SEM, (Thermogravimetric Analysis) TGA, (X-ray Diffraction) XRD, (Fourier transform infrared spectroscopy) FTIR analizleri gerçekleştirilmiştir. Çalışma sonuçlarına göre, PHBt örneklerinin termal dayanımlarının PHBs örneklerine oranla daha yüksek olduğu, MKS’lerin PHB içerisinde odun ununa oranla daha homojen dağımlar gösterdiği belirlenmiştir.

Preparation and Characterization of Microcrystalline Cellulose and Wood Flour Added Polyhydroxybutyrate (PHB) Composites through Solvent Method

The need to turn to alternative crops has arisen due to the environmental extinction periods and environmental impacts of petroleum derived materials. This has accelerated the development of biopolymer materials. These polymers, which are easily degraded in the nature, have low mechanical properties and are widely used with support materials. In this study, biopolymer film layers were obtained from polyhydroxybutyrate, which was synthesized by solvent casting method (PHBs) and polyhydroxybutyrate which was supplied commercially (PHBt) have used as biopolymers. Polyhydroxybutyrates were supported different ratios with wood flour and microcrystalline cellulose. Scanning electron microscope (SEM), Thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) analyzes were performed on the obtained biopolymers. According to the results of the study, the thermal resistances of PHBt samples are higher than those of PHBs and has been determined that microcrystalline celluloses show more homogeneous dispersions in PHB compared to wood flour.

___

  • 1. Anderson AJ, Dawes EA (1990). Occurrence, metabolism, metabolic role and industrial uses of bacterial polyhydroxyalkanoates. Microbiology and Molecular Biology Reviews, 54: 450-472
  • 2. Avella M, La Rota G, Martuscelli E, Raimo M, Sadocco P, Elegir G, Riva R (2000). Poly(3- hydroxybutyrate-co-3-hydroxyvalerate) and wheat straw fibre composites: thermal, mechanical properties and biodegradation behavior. J Mater Sci 35:829–836
  • 3. Bartczak Z, Galeski A, Kowalczuk M, Sobota M, Malinowski R (2013). Tough blends of poly (lactide) and amorphous poly ((R, S)-3-hydroxy butyrate)–morphology and properties. European Polymer Journal, 49(11), 3630-3641.
  • 4. Bhardwaj R, Mohanty AK, Drzal LT, Pourboghrat F, Misra M (2006). Renewable resource based green composites from recycled cellulose fiber and poly(3-hydroxybutyarte-co-3-hydroxyvalerate) bioplastic. Biomacromolecules 7, 2044–2051
  • 5. Bruney G, Lefebvre G, Genser KL (1998). Polyhydroxyalkanoates, biopolyesters from renewable resources: Physiological and engineering aspects. Journal of Biotechnology, 65: 127-161.
  • 6. Davis G, Song JH (2006). Biodegradable packaging based on raw materials from crops and their impact on waste management. Industrial crops and products, 23(2), 147-161.
  • 7. Fernandes EG, Pietrini M, Chiellini E (2004). Bio-based polymeric composites comprising wood flour as filler. Biomacromolecules, 5(4), 1200-1205.
  • 8. Forrest JA, Dalnoki-Veress K, Stevens JR, Dutcher JR (1996). Effect of free surfaces on the glass transition temperature of thin polymer films. Physical review letters, 77(10), 2002.
  • 9. Hanna M, Biby G, Miladinov V (2001). Production of microcrystalline cellulose by reactive extrusion. US Patent 6: 228,213.
  • 10. Hodzic A, Coakley R, Curro R, Brendt CC, Shanks RA (2007). Design and optimization of biopolyester bagasse fiber composites. J Biobased Mater Bioenergy 1: 46–55
  • 11. Hristov VN, Krumova M, Vasileva S, Michler GH (2004). Modified polypropylene wood flour composites. II. Fracture, deformation, and mechanical properties. Journal of Applied Polymer Science, 92 (2): 1286-1292.
  • 12. Jiang L, Morelius E, Zhang J, Wolcott M, Holbery J (2008). Study of the poly(3-hydroxybutyrate-co-3- hydroxyvalerate)/cellulose nanowhisker composites prepared by solution casting and melt processing. J Compos Mater 42:2629–2645
  • 13. Keller A (2003). Compounding and mechanical properties of biodegradable hemp fiber composites. Compos Sci Technol 63:1307–1316
  • 14. Khanna S, Srivastava AK (2005). Recent advances in microbial polyhydroxyalkanoates. Process Biochemistry, 40(2), 607-619.
  • 15.Lee S-H, Wang S (2006). Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos A 37:80–91
  • 16.Luo S, Netravali AN (1999). Interfacial and mechanical properties of environment-friendly “green” composites made from pineapple fibers and poly(hydroxybutyrate-co-valerate) resin. J Mater Sci 34:3709– 3719
  • 17. Madison LL, Huisman GW (1999). Metabolic Engineering of Poly(3- Hydrxyalkanoates): From DNA to plastic. Mic. Mol. Bio. Reviews, 63: 21-53
  • 18. Mashadi AB, Newton JM (1987). The characterization of the mechanical properties of microcrystalline cellulose: a fracture mechanics approach. Journal of Pharmacy and Pharmacology, 39(12): 961-965.
  • 19. Mathew AP, Oksman K, Sain M (2005). Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of applied polymer science, 97(5), 2014-2025.
  • 20. Mohanty AK, Khan MA, Sahoo S, Hinrichsen G (2000). Effect of chemical modification on the performance of biodegradable jute yarn-Biopol® composites. J Mater Sci 35:2589–2595
  • 21. Nuñez A J, Sturm PC, Kenny JM, Aranguren MI, Marcovich NE, Reboredo MM (2003). Mechanical characterization of polypropylene–wood flour composites. Journal of Applied Polymer Science, 88(6), 1420- 1428.
  • 22. Ren H, Liu Z, Zhai H, Cao Y, Omori S (2014). Effects of lignophenols on mechanical performance of biocomposites based on polyhydroxybutyrate (PHB) and polypropylene (PP) reinforced with pulp fibers. BioResources, 10(1), 432-447.Singh S, Mohanty AK (2007) Wood fiber reinforced bacterial bioplastic composites: fabrication and performance evaluation. Compos Sci Technol 67:1753–1763.
  • 23. Vila C, Campos AR, Cristovao C, Cunha AM, Santos V, Parajo JC (2000). Sustainable bio composites based on auto hydrolysis of lignocellulose substrates. Compos Sci Technol 68:944–952.
  • 24.Wong S, Shanks RA, Hodzic A (2002). Properties of poly(3- hydroxybutyric acid) composites with flax fibres modified by plasticiser absorption. Macromol Mater Eng 287:647–655.
  • 25.Zhang M, Thomas NL (2011). Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties. Advances in Polymer Technology, 30(2), 67-79.
  • 26.Zini E, Focarete ML, Noda I, Scandola M (2007). Bio-composite of bacterial poly(3-hydroxybutyrate-co-3- hydroxyhexanoate) reinforced with vegetable fibers. Compos Sci Technol 67:2085–2094