Mantar Tahribatına Uğramış Titrek Kavak Odununun FT-IR Yöntemiyle Kimyasal Analizi

FT-IR yöntemi, mantar çürüklük tahribatının tespiti, kimyasal değişikliklerin karekterizasyonu için kullanışlı bir metoddur. Yapılan çalışmalarda mantarların oluşturduğu kayıplar ağırlık üzerinden hesaplanmaktadır. Bu çalışmada Bakır azol ve CX-8 maddeleriyle emprenye edilen ve 2 ay süreyle Trametes versicolor mantarına maruz bırakılan örneklerdeki kimyasal değişimler FT-IR analizi ine incelenecektir. Elde edilen sonuçlara göre kontrol ve %1 konsantrasyonda emprenye edilen örneklerde lignin, selüloz ve hemiselüloz piklerinde azalma gözlenmiştir. %3 konsantrasyonda emprenye edilen ve mantar testi uygulanan örneklerin lignin pikinde önemli bir değişme olmamıştır.  Emprenye işlemi ile O-H ve C-H grupları modifiye edilmiştir ve ilgili pikler önemli oranda azalmıştır. 

Chemical Characterization of Fungal Deterioration In Populus Alba By FT-IR

FT-IR analysis is one of the most useful method for investigating fungal decays, characterizing the chemical changes in the wood. The mass losses in wood caused by the fungi are calculated on the basis of difference in weight. In this study, chemical changes of samples, impregnated with copper azole and CX-8 and exposed to Trametes versicolor fungi for 2 months, were examined by FT-IR. According to the results obtained, there was a decrease in lignin, cellulose and hemicellulose peaks after impregnation at 1% concentration and for control wood. No significant change was shown in the lignin peaks for the treated samples (3 % concentration) exposed to the decay test. Results indicated that O-H and C-H groups were modified by impregnation and related peaks were significantly reduced. 

___

  • 1. Buschaus HU, Valcke AR (1995). Triazoles: Synergism between propiconazole and tebuconazole. Document-the International Research Group on Wood Preservation IRG/WP 95-30092, June 11-16, Helsingor/Denmark.
  • 2. Can A, Sivrikaya H (2016). The Combined Effects of Copper and Oil Treatment on Wood Chemical Properties. International Forestry Symposium (IFS 2016), pg:741-748, 07-10 December 2016, Kastamonu/Turkey
  • 3. Catto AL, Montagna LS, Almeida SH, Silveira RM, Santana RM (2016). Wood plastic composites weathering: Effects of compatibilization on biodegradation in soil and fungal decay. International Biodeterioration & Biodegradation, 109, 11-22.
  • 4. European Standard EN 113 (1996). Wood preservatives – Test method for determining the protective effectiveness against wood destroying basidiomycetes – Determination of toxic values. European Committee for Standardization (CEN), Brussels, Belgium
  • 5. Emandi ANA, Ileana Vasiliu C, Budrugeac P, Stamatin I (2011). Quantitative investigation of wood composition by integrated FT-IR and thermogravimetric methods. Cellulose Chemistry and Technology, 45(9), 579.
  • 6. Eriksson KEL, Blanchette R, Ander P (2012). Microbial and enzymatic degradation of wood and wood components. Springer Science and Business Media.
  • 7. Faix O, Bremer J, Schmidt O, Tatjana SJ (1991). Monitoring of chemical changes in white-rot degraded beech wood by pyrolysis—gas chromatography and Fourier-transform infrared spectroscopy. Journal of Analytical and Applied Pyrolysis, 21(1-2), 147-162.
  • 8. Feist WC, David NS H (1984). Chemistry of weathering and protection. p.401-451.
  • 9. Jiang M, Wang P, Piao C, Li Z, Lu Q, Liu L (2002). Laboratory evaluation and field trial of chlorothalonil and copper-based preservatives and leaching performance of copper in copper treated wood. IRG/WP, 02- 30279.
  • 10. Jusoh IB (2000). Microdistribution of chromated copper arsenate preservative in rubberwood (Hevea brasiliensis. Arg), Ph.D dissertation, Michigan State Univ. Michigan, USA. 130p.
  • 11. Li Y, Dong X, Liu Y, Li J, Wang F (2011). Improvement of decay resistance of wood via combination treatment on wood cell wall: Swell-bonding with maleic anhydride and graft copolymerization with glycidyl methacrylate and methyl methacrylate. International Biodeterioration & Biodegradation, 65(7), 1087-1094.
  • 12. Li Y, Liu Z, Dong X, Fu Y, Liu Y (2013). Comparison of decay resistance of wood and wood-polymer composite prepared by in-situ polymerization of monomers. International Biodeterioration & Biodegradation, 84, 401-406.
  • 13. Naumann A, Stephan I, Noll M (2012). Material resistance of weathered wood-plastic composites against fungal decay. International Biodeterioration & Biodegradation, 75, 28-35.
  • 14. Naumann A, Navarro-González M, Peddireddi S, Kües U, Polle A (2005). Fourier transform infrared microscopy and imaging: detection of fungi in wood. Fungal Genetics and Biology, 42(10), 829-835.
  • 15. Mohebby B (2005). Attenuated total reflection infrared spectroscopy of white-rot decayed beech wood. International biodeterioration & biodegradation, 55(4), 247-251.
  • 16. Pandey KK, Pitman AJ (2003). FTIR studies of the changes in wood chemistry following decay by brownrot and white-rot fungi. International biodeterioration & biodegradation, 52(3), 151-160.
  • 17. Pandey KK, Pitman AJ (2004). Examination of the lignin content in a softwood and a hardwood decayed by a Brown rot fungus with the acetyl bromide method and Fourier transform infrared spectroscopy. Journal of Polymer Science Part A: Polymer Chemistry, 42(10), 2340-2346.
  • 18. Pandey KK (2005). A Note onthe Influence of Extractives on the Photo-Discoloration and PhotoDegradation of Wood, Polmer Degradation and Stability, 87, 375-379.
  • 19. Petrou M, Edwards HG, Janaway RC, Thompson GB, Wilson AS (2009). Fourier-transform Raman spectroscopic study of a Neolithic waterlogged wood assemblage. Analytical and bioanalytical chemistry, 395(7), 2131-2138.
  • 20. Pizzi A (1982). The chemistry and kinetic behavior of Cu-Cr-As/B wood preservatives, II.Fixation of the Cu/Cr system on the wood. Journal of Polymer Science: Polymer Chemistry Edition 20 (3): 707-724.
  • 21. Richardson BA (2002). Wood preservation. Routledge.
  • 22. Sivrikaya H, Can A (2014). Performance of Copper-azole and Water Repellents against Some Wood Rot Fungi. Türkiye II. Orman Entamolojisi ve Patolojisi Sempozyumu, Antalya, p.436-441
  • 23. Özgenç Ö (2014). Doğu Karadeniz Bölgesi Yayla Evlerinde Kullanilan Ahşap Malzemenin Diş Hava Koşullarina Karşi Dayaniminin Arttirilmasi. Doktora Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon.
  • 24. Taşcıoğlu C (2004). CCA (Bakır/Krom/Arsenik) emprenye maddesinin kullanımdan kalkması ve alternative odun koruma maddeleri. İstanbul Üniversitesi Orman Fakültesi Dergisi, 54 (2), 97-106
  • 25. Temiz A (2005). Dış Hava Koşullarının Emprenyeli Ağaç Malzemeye Etkileri, Doktora Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon.
  • 26. Temiz A, Alfredsen G, Yildiz UC, Gezer ED, Kose G, Akbas S, Yildiz S (2014). Leaching and decay resistance of alder and pine wood treated with copper based wood preservatives. Maderas. Ciencia y tecnología, 16(1), 63-76.
  • 27. Tomak ED (2011). Masif Odundan Bor İşleminin Yıkanmasını Önlemede Yağlı Isıl İşlemin ve Emülsiyon Teknikleri ile Emprenye İşlemin Etkisi, Doktora Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon.
  • 28. Yıldız ÜC (2000). Odun Zararlıları Ders Notu, Karadeniz Teknik Üniversitesi.
  • 29. Yilgor N, Dogu D, Moore R, Terzi E, Kartal SN (2013). Evaluation of fungal deterioration in Liquidambar orientalis Mill. heartwood by FT-IR and light microscopy. BioResources, 8(2), 2805-2826.
Bartın Orman Fakültesi Dergisi-Cover
  • ISSN: 1302-0943
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1998
  • Yayıncı: Bartın Üniversitesi Orman Fakültesi