Farklı çapraz bağlayıcılar ile hazırlanmış poliakrilamid hidrojellerinin değerlendirilmesi

Çapraz bağlı poliakrilamid (PAAm) hidrojelleri; fiziksel özellikleri üzerine çapraz bağlayıcı türü etkisinin incelenmesi amacıyla sentezlenmiştir. Bu amaçla; N,N’-metilenbisakrilamid (MBA), trietilen glikol dimetakrilat (TEGDMA), glutaraldehit (GLU), divinilsülfon (DVS), N,N’-Diallil L-ltartardiamit (DATD) ve epiklorhidrin (ECH;) çapraz bağlayıcılar olarak seçilmiş ve bu hidrojeller sırasıyla PAAm-MBA, PAAm-TEGDMA, PAAm-GLU, PAAm-DVS, PAAm-DATD, PAAm-ECH olarak isimlendirilmiştir. Tüm çapraz bağlayıcılar için nçapraz bağlayıcı/nmonomer oranı=%2.5 olarak sabitlenmiştir. Amonyumpersülfat (APS) ve N,N,N’,N’-tetrametiletilendiamin (TEMED); redoks başlatıcısı-hızlandırıcısı olarak seçilmiş ve PAAm hidrojelleri; çapraz bağlayıcıların bulunduğu ortamda monomerlerin radikalik polimerleşmesi ile hazırlanmıştır. PAAm hidrojellerinin şişme ve difüzyon parametrelerinin hesaplanabilmesi amacıyla kinetik şişme çalışmaları; deiyonize suda (DS) ve 25 oC’de gerçekleştirilmiştir. Deneysel şişme verileri; şişme prosesinin 2o’den kinetiğe uyduğunu göstermiştir. PAAm hidrojellerinin şişme dereceleri; PAAm-ECH>PAAm-DVS>PAAm-MBA=PAAm-DATD>PAAm-GLU>PAAm-TEGDMA olarak bulunmuştur. PAAm hidrojelleri; su moleküllerinin hidrojellere difüzyon türünün Fick tipi olmayan difüzyon türü olduğunu gösteren ve değeri 0.57 ve 0.80 aralığında değişen sayılara (n) sahiptir. PAAm hidrojellerinin çapraz bağlar arası ortalama mol kütlesi ( ), çapraz bağ yoğunluğu (q) ve gözeneklilik (P) gibi ağ yapı parametreleri hesaplanmıştır. Denge şişme çalışmaları; protein (sığır serumu albumini, BSA), bakteriyel polisakkarit (dekstran, DEX), vitamin (nikotinamid, NAD) ve ilaç etken maddesi (8-hidroksi 7-iyodokinolin-5-sülfonik asit, HKSA) çözeltilerinde de yapılmıştır. Şişme ve ağ yapı parametreleri, PAAm hidrojelleri; yapısı protein, karbohidrat, vitamin ve ilaç etken moleküllerine benzeyen moleküller ile etkileştirildiğinde şişme ve adsorpsiyon özelliklerinin tahmin edilmesinde yol gösterici olacaktır. 

Evaluation of polyacrylamide hydrogels clamped with different crosslinkers

Crosslinked polyacrylamide (PAAm) hydrogels were synthesized to investigate the effect of crosslinker type onto pysical properties of PAAM gels. With this aim; N,N’-methylenebis acrylamide (MBA), triethylene glycol dimethacrylate (TEGDMA), glutaraldehyde (GLU),  divinyl sulfone (DVS), N,N′-diallyl L-tartardiamide (DATD), and epichlorohydrin (ECH)  were selected as crosslinkers and these hydrogels were called as PAAm-MBA, PAAm-TEGDMA, PAAm-GLU, PAAm-DVS, PAAm-DATD, and PAAm-ECH, respectively. The ratio of ncrosslinker/nmonomer was fixed as 2.5% for all crosslinkers. PAAMs were prepared by radical polymerization of monomers in presence of crosslinkers  and redox initiator-accelerator, i.e., ammonium persulphate (APS) and N,N,N′,N′-tetramethylethylenediamine (TEMED). Kinetic swelling studies of hydrogels were carried out in deionize water (DW) at 25 ◦C for calculating swelling and diffusion parameters of the PAAms. Experimental data of swelling suggest clearly that the swelling processes obey second-order kinetics. Swelling degrees of the PAAms were found as PAAm-ECH>PAAm-DVS>PAAm-MBA=PAAm-DATD>PAAm-GLU>PAAm-TEGDMA. PAAms has numbers (n) between 0.57 and 0.80 indicating type of diffusion of water molecules to the hydrogels is non-Fickian type. Network parameters of PAAMs such as average molecular weight between crosslinks ( ), crosslink density (q), and porosity (P) were calculated. Equilibrium swelling studies were also realized in solutions of protein (bovine serum albumine, BSA), bacterial polysaccharide (dextran, DEX), vitamine (nicotineamide, NAD), and drug (8-hydroxy-7-iodoquinoline-5-sulfonic acid, HKSA). Swelling and network parameters of the PAAms will be guide to estimate of swelling and adsorption behaviours of PAAm hydrogels clamped with different crosslinkers when they are interacted with molecules such as protein, polysaccharide, vitamine, and drug molecules.

___

  • [1] Friedman, M., Chemistry, biochemistry, and safety of acrylamide. A review, Journal of Agricultural and Food Chemistry, 51, 4504−4526, (2003).
  • [2] Tornqvist, M., Fred C., Haglung, J, Helleberg, H., Paulsson, B., Rydberg, P., Protein adducts: Quantitative and qualitative aspects of their formation, analysis and applications, Journal of Chromatography B, 85, 172-180, (2002).
  • [3] Bodet, E.P., Salard, I., Przybylski, C., Gonnet, F., Gomila, C., Ausseil, J., Daniel, R., Efficient recovery of glycosaminoglycan oligosaccharides from polyacrylamide gel electrophoresis combined with mass spectrometry analysis, Analytical and Bioanalytical Chemistry, 409, 1257-1269, (2017).
  • [4] Raj, P., Batchelor , W., Blanco, A., Fuente, E., Negro, C., Garnier, G., Effect of polyelectrolyte morphology and adsorption on the mechanism of nanocellulose flocculation, Journal of Colloid and Interface Science, 481, 158–167, (2016).
  • [5] Inayat, F., Cheema, A.R., Virk, H.H., Yoon, D.J., Farooq, S., Manan, A. Nonthrombotic pulmonary embolism: a potential complication of polyacrylamide hydrogel cosmetic injection, Case Reports in Medicine, 2016, ID 1397434, (2016).
  • [6] Abdel-Galil, E.A., Sharaf El-Deen, G.E. El-Aryan, Y.F. Khalil, M., Preparation of hybrid ion exchanger based on acrylamide for sorption of some toxic metal ions from aqueous waste solutions, Russian Journal of Applied Chemistry, 89, 467–479, (2016).
  • [7] Zhu, G., Liu, J., Yin, J., Li, Z., Ren, B., Sun, Y., Wan, P., Liu, Y., Functionalized polyacrylamide by xanthate for Cr (VI) removal from aqueous solution, Chemical Engineering Journal, 288, 390-398, (2016).
  • [8] Mohan, M.Y., Murthy, K.S.P., Sreeramulu, J., Raju, K.M., Swelling behavior of semi-interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and poly(acrylamide-co-sodium methacrylate), Journal of Applied Polymer Science, 98, 302-314, (2005).
  • [9] Ekici, S., Saraydin, D., Synthesis, characterization and evaluation of IPN hydrogels for antibiotic release, Drug Delivery, 11, 381-388, (2004).
  • [10] Ekici, S., Isikver, Y., Saraydin, D., Poly(acrylamide-sepiolite) composite hydrogels: Preparation, swelling and dye adsorption properties, Polymer Bulletin, 57, 231-241, (2006).
  • [11] Ekici, S., Guntekin, G., Saraydin, D., The removal of textile dyes with crosslinked chitosan-polyacrylamide adsorbent hydrogels, Polymer-Plastics Technology and Engineering, 50, 1247-1255, (2011).
  • [12] Raju, M.P., Raju, K.M., Synthesis and water absorbency of crosslinked superabsorbent polymers, Journal of Applied Polymer Science, 85, 1795- 1801, (2001).
  • [13] Chauhan, G.S.,Chauhan, S., Chauhan, K., Sen, U., Synthesis and characterization of acrylamide and 2-hydroxylpropyl methacrylate hydrogels for specialty applications, Journal of Applied Polymer Science, 99, 3040–3049, (2006).
  • [14] Wang, X., Tang, X., Feng, P., Li, X., Zhao, C., Chen, W., Zheng, H., A novel preparation method of polyaluminum chloride/polyacrylamide composite coagulant: Composition and characteristic, Journal of Applied Polymer Science, 134, Article Number: 44500, (2017).
  • [15] Alam, A., Kuan, H.C., Zhao, Z., Xu, J., Ma, J., Novel polyacrylamide hydrogels by highly conductive, water-processable graphene, Composites Part A-Applied Science and Manufacturing, 93, 1-9, (2017).
  • [16] Adibnia, V., Taghavi, S.M., Hill, R.J. Roles of chemical and physical crosslinking on the rheological properties of silica-doped polyacrylamide hydrogels, Rheologica Acta, 56, 123-134, (2017).
  • [17] Yang, Y., Song, S., Zhao, Z., Grapheneoxide (GO)/polyacrylamide (PAM) composite hydrogels as efficient cationic dye adsorbents, Colloids and Surfaces A-Physicochemical and Engineering Aspects, 513, 315-324, (2017).
  • [18] Masalovich, M.S., Shevtsova, Y.A., Ivanova, A.G., Zagrebelnyy, O.A., Kruchinina, I.Y., Shilova, O.A. Electrochemical synthesis of polythiophenepolyacrylamide composite coatings used for pseudo capacitors, Glass Physics and Chemistry, 42, 635-636, (2016).
  • [19] Li, Z., Su, Y., Haq, M.A., Xie, B., Wang, D., Konjac glucomannan/polyacrylamide bicomponent hydrogels: Self-healing originating from semi-interpenetrating network, Polymer, 103, 146-151, (2016).
  • [20] Saraydin, D., Isikver, Y., Karadag, E., Sahiner, N., Guven, O., In vitro dynamic swelling behaviors of radiation synthesized polyacrylamide with crosslinkers in the simulated physiological body fluids, Nuclear Instruments and Methods in Physics Research, B 187; 340–344, (2002).
  • [21] Yang, C., Zhou, X., Liu, Y., Wang, J., Tian, L., Zhang, Y., Hu, X., Charged groups synergically enhance protein imprinting in amphoteric polyacrylamide cryogels, Journal of Applied Polymer Science, 133, DOI: 10.1002/app.43851, (2016).
  • [22] Duan, Z., Zhong, M., Shi, F., Xie, X. Transparenth-BN/polyacrylamide nano composite hydrogels with enhanced mechanical properties, Chinese Chemical Letters, 27, 1490–1494, (2016).
  • [23] Wang, D., Wang, W.J., Li, B.G., Semibatch RAFT polymerization for branched polyacrylamide production: Effect of divinyl monomer feeding policies, AICHE Journal, 59, 1322-1333, (2013).
  • [24] Shen, J., Yan, B., Li, T., Long, Y., Li, N., Ye, M., Study on graphene-oxidebased polyacrylamide composite hydrogels, Composites Part A-Applied Science and Manufacturing, 43, 1476-1481, (2012).
  • [25] Zhu, A., Shi, Z., Jin, J., Li, G., Jiang, J., Synthesis and properties of polyacrylamide-based conducting gels with enhanced mechanical strength, Journal of Macromolecular Science Part B-Physics, 51, 2183-2190, (2012).
  • [26] Karadag, E., Kundakci, S., Durukan, H.B., Uzum, O.B., Water sorption studies and adsorptive features of highly swollen acrylamide-based ternary hydrogels for uranyl ions, Polymer-Plastics Technology and Engineering, 52, 783–794, (2013).
  • [27] Xie, Y., Huang, H., Preparation and characterization of an amphiphilic macro photoinitiatorbased on 2-hydroxyl-2-methyl-1-phenylpropanone, Journal of Applied Polymer Science, 133, Article Number:43910, (2016).
  • [28] Hoshoudy, A.E., Desouky, S., Al-sabagh, A., El-kady, M., Betiha, M., Mahmoud, S., Synthesis and characterization of polyacrylamide crosslinked copolymer for enhanced oil recovery and rock wettability alteration, International Journal of Oil, Gas and Coal Engineering, 3, 47-59, (2015).
  • [29] Peppas, N.A., Zach, H.J., Khademhosseini, A., Langer, R., Hydrogels in biology and medicine: from molecular principles to bionanotechnology, Advanced Materials, 18, 1345-1360, (2006).