Amorf dentritik agatta quasi kristallerin fraktal büyümesi

Bu çalışmada; katı-katı faz geçişiyle quasi-kristallerin fraktal büyümesi sunulmaktadır. Yüksek dağılıma sahip rastgele dallanarak kristalleşmiş fraktal büyüme fazı amorf dendritik agatlarda gözlemlenmiştir. Sırası ile, yoğunluk korelasyon fonksiyon üssü mangan kristalleri için yaklaşık olarak a ~ 0.308-0.342 fraktal boyut değerleri D ~ 1.238-1.626 hesaplanmıştır. Dentritik agat sisteminin bileşenleri sıcaklık ve konsantrasyon gradiyentlerinin durumuna göre değişkenlik gösterir. Sıcaklık arttıkça mangan oksit çekirdeğe sızmakta, sıcaklık azaldıkça ise mangan oksit katılaşıp kristalleşmektedir. Bu numunede kristal büyüme quasi statik limitte ve difüzyonla sınırlı koşullarda gerçekleşmektedir.  Sonuçlar; difüzyonla sınırlı kümeleşme modeli ile uyum göstermektedir. Fraktal büyümenin gözlemlendiği diğer sistemlerle karşılaştırılarak oluşum mekanizmaları tartışılmıştır. 

Fractal growth of quasi crystals in the amorphous dendritic agate

In this study, fractal growth of quasi-crystals is presented by solid-solid phase transition. The randomly branched crystallized and quasi fractal growth phase with high distribution was observed in amorphous dendritic agates. The critical exponent values of correlation function and the fractal dimensions were approximately calculated as a ~ 0.308-0.342 and D ~ 1.238-1.626 and for manganese crystals, respectively. The components of the dendritic agate system vary according to the state of the temperature and concentration gradients. As temperature increases, manganese oxide seeps into the core. As temperature decreases, manganese oxide solidifies and crystallizes. In this sample, crystal growth occurs at quasi-static limit and diffusion limited conditions. Results; It is in agreement with the diffusion-limited aggregation model. The formation mechanisms have been discussed in comparison with other systems in which fractal growth is observed.

___

  • [1] Barton, P.B., Ore textures: problems and opportunities, Mineralogical Magazine, 55, 303-315, (1991).
  • [2] Bayirli, M. ve Ozbey, T., Numerical approaches about the morphological description parameters for the manganese deposits on the magnesite ore surface, Zeitschrift for Natuforchhung Section A-A Journal of Physical Sciences, 68a, 405-411, (2013).
  • [3] Swartzlow, C., Two dimensional dendrites and their origin, Geology Mineralogical Society of America, 9, 403-411, (1934).
  • [4] García-Ruiz, J.M., Otálora, F., Sanchez-Navas, A. ve Higes-Rolando, F., The formation of manganese dendrites as the material record of flow structures In Fractals and Dynamics Systems in Geosciences, Edited by J. H. Kruhl, Springer Verlag, 307, (1994).
  • [5] Dendritic agate gemstone information, http://www.gemselect.com/gem_info/dendritic-agata, (27.01.2017).
  • [6] Xu, H., Chen, T. ve Konishi, H., HRTEM investigation of trilling todorokite and nano-phase Mn-oxides in manganese dendrites, American Mineralogist, 95, 556-562, (2010).
  • [7] Ng, T.F. ve Teh, G.H., Fractal and shape analyses of manganese dendrites on vein quartz, Geological Society of Malaysia, 55, 73-79, (2009).
  • [8] Bayirli, M. ve Kockar, H., A Numerical application using diffusion–limited aggregation for the manganese dendrites, Zeitschrift for Natuforchhung Section A-A Journal of Physical Sciences, 65a, 777-780, (2010).
  • [9] Witten, T.A. ve Sander, L.M., Diffusion-limited aggregation, a kinetic phenomenon, Physical Review Letter, 47, 19, (1981).
  • [10] Özbey, T. ve Bayırlı M., Mangan sıvamaları ve DLA modeli için sayısal bir hesaplama, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 18, 1, 58- 66, (2015).
  • [11] Chopard, B., Herrmann, H. ve Vicseck, T., Structure and growth mechanism of mineral dendrites, Nature, 353, 409-412, (1991).
  • [12] Schneider, C.A., Rasband, W.S. ve Eliceiri K.W., NIH Image to ImageJ: 25 years of image analysis, Nature Methods 9, 671-675 (2012).
  • [13] Merdan, Z. ve Bayirli, M., Computation of the fractal pattern in manganese dendrites, Chinese Physic Letters, 22, 8, 2112-2115, (2005).
  • [14] Matsushitai, M., Hayakawa, Y. ve Sawada, Y., Fractal structures and cluster statistic of zinc-metal trees deposited on a line electrode, Physical Review A, 32, 3814-3816, (1985).
  • [15] Radnoczi, G., Vicsek, T., Sander, L.M. ve Grier, D., Growth of fractal crystals in amorphous GeSe2 films, Physical Review, 35, 9, 4012-4015, (1987).
  • [16] Koçkar, H., Bayırlı, M. ve Alper, M., A new example of the diffusion-limited aggregation: Ni-Cu film patterns, Applied Surface Science, 256, 9, 2995-2999, (2010)