Betain ve Tahıl Ürünlerindeki Varlığı

Bu çalışmada tahılların işlenmesi sırasında uygulanan ısıl işlemlerin betain içeriğine etkisi ve betainin insan sağlığına faydaları ele alınmıştır. Tahıllar ve tahıl ürünleri, betain ve onun öncüsü olan kolin gibi esansiyel olmayan besin bileşenlerinin önemli kaynaklarıdır. Betainin plazma homosistein düzeylerini düşürmenin önemli olduğu birçok kronik hastalığın önlenmesinde ve tedavisinde oldukça etkili bir role sahip olduğu bildirilmektedir. Tahıllar arasında en yüksek betain içeriği çavdarda belirlenirken, onu buğday, arpa ve yulaf takip etmektedir. Betain içeriği en yüksek düzeyde tahılların kepek ve ruşeym fraksiyonlarında belirlenmiştir. Tam tahıllardan hazırlanan ürünlerde pişirme sırasında betain kaybı rafine tahıl ürünlerine göre daha düşük olarak gözlemlenmiştir. Betain içeriği göz önüne alındığında tam tahıl içeren gıdaların beslenme açısından daha uygun olduğu söylenebilir.

Betaine and Presence in Cereal Products

In this study, the effects of heat treatments applied during the processing of cereals on betaine content and the benefits of betaine to human health are discussed. Cereals and cereal products are important sources of non-essential nutrients such as betaine and its precursor choline. Betaine has been reported to have a wide variety of beneficial effects on humans. This compound is highly effective in preventing and treating many chronic diseases in which lowering plasma homocysteine levels is important. Among the cereals, the highest betaine content was determined in the rye, followed by wheat, barley and oat. In flour fractions, betaine content was determined in the highest germ and bran fractions. The loss of betaine in products prepared from whole grains during baking is lower than in refined cereal products. Considering the betaine content, it can be said that foods containing whole grains are more suitable for nutrition

___

  • Akhavan-Salamat, H., Ghasemi. H. A., (2016). Alleviation of chronic heat stress in broilers by dietary supplementation of betaine and turmeric rhizome powder: dynamics of performance, leukocyte profile, humoral immunity, and antioxidant status. Tropical Animal Health and Production, 48, 181-188. https://doi.org/10.1007/s11250-015-0941-1
  • Alirezaei, M., Niknam, P., Jelodar, G. (2012). Betaine elevates ovarian antioxidant enzyme activities and demonstrates methyl donor effect in non-pregnant rats. International Journal of Peptide Research and Therapeutics, 18(3),281-290. https://doi.org/10.1007/s10989-012-9300-5
  • Ardalan, M., Dehghan-Banadaky, M., Rezayazdi, K., Hossein-Zadeh, N. G. (2011). The effect of rumen-protected methionine and choline on plasma metabolites of Holstein dairy cows. The Journal of Agricultural Science, 149(5), 639-646. https://doi.org/10.1017/S0021859610001292
  • Bharwana, S.A., Ali, S., Farooq, M.A., Iqbal, N., Hameed, A., Abbas, F., Ahmad, M.S.A. (2014). Glycine betaine-induced lead toxicity tolerance related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton. Turkish Journal of Botany, 38, 281-292. https://doi.org/10.3906/bot-1304-65
  • Borsook, M. E., Billig, H. K., Golseth, J. G. (1952). Betaine and glycocyamine in the treatment of disability resulting from acute anterior poliomyelitis. Annals of Western Medicine and Surgery, 6(7), 423-427.
  • Bruce, S.J., Guy, P.A., Rezzi, S., Ross, A.B. (2010). Quantitative measurement of betaine and free choline in plasma, cereals and cereal products by isotope dilution LC-MS/MS. Journal of Agriculture and Food Chemistry, 58, 2055-2061. https://doi.org/10.1021/jf903930k
  • Ceclu, L., Nistor, O.V. (2020). Red Beetroot: Composition and Health Effects-A Review. Journal of Nutritional Medicine and Diet Care, 6, 043. https://doi.org/10.23937/2572-3278.1510043
  • Cheng, C., Pei, L., Yin, T., Zhang, K. (2018). Seed treatment with glycine betaine enhances tolerance of cotton to chilling stress. The Journal of Agricultural Science, 156(3), 323-332. https://doi.org/10.1017/S0021859618000278
  • Corol, D. I., Ravel, C., Raksegi, M., Bedo, Z., Charmet, G., Beale, M. H., Ward, J. L. (2012). Effects of genotype and environment on the contents of betaine, choline, and trigonelline in cereal grains. Journal of Agriculture and Food Chemistry, 60, 5471-5481. https://doi.org/10.1021/jf3008794
  • Craig, S. A. (2004). Betaine in human nutrition. The American Journal of Clinical Nutrition, 80, 539-549. https://doi.org/10.1093/ajcn/80.3.539
  • Davies, S.E., Woolf, D.A., Chalmers, R.A., Rafter, J.E., Iles, R.A. (1992). Proton NMR studies of betaine excretion in the human neonate: consequences for choline and methyl group supply. The Journal of Nutritional Biochemistry, 3(10), 523-530. https://doi.org/10.1016/0955-2863(92)90074-S
  • Day, C. R., Kempson, S. A. (2016). Betaine chemistry, roles, and potential use in liver disease. Biochimica et Biophysica Acta (BBA)-General Subjects, 1860 (6), 1098-1106. https://doi.org/10.1016/j.bbagen.2016.02.001
  • De Zwart, F. J., Slow, S., Payne, R. J., Lever, M., George, P. M., Gerrard, J. A., Chambers, S. T. (2003). Glycine betaine and glycine betaine analogues in common foods. Food Chemistry, 83, 197-204. https://doi.org/10.1016/S0308-8146(03)00063-3
  • Eklund, M., Bauer, E., Wamatu, J., Mosenthin, R. (2005). Potential nutritional and physiological functions of betaine in livestock. Nutrition Research Reviews, 18 (1), 31-48. https://doi.org/10.1079/NRR200493
  • European Commission (2012). Commission Regulation No 432/2012 of 16 May 2012 establishing a list of permitted health claims made on foods, other than those referring to the reduction of disease risk and to children’s development and health, Official Journal of the European Union. 2012. http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:136:0001:0040:en:PDF
  • Filipćev, B., Kojić, J., Krulj, J., Bodroža-Solarov, M., Ilić, N. (2018). Betaine in cereal grains and grain-based products. Foods. 7(4), 49. https://doi.org/10.3390/foods7040049
  • Filipćev, B.V., Brkljaća, J.S., Krulj, J.A., Bodroža-Solarov, M.I. (2015).The betaine content in common cereal-based and gluten-free food from local origin. Food and Feed Research, 42, 129-137. https://doi.org/10.5937/FFR1502129F
  • Ganjavi, A.S., Oraei, M., Gohari, G., Akbari, A., Faramarzi, A. (2021). Glycine betaine functionalized graphene oxide as a new engineering nanoparticle lessens salt stress impacts in sweet basil (Ocimum basilicum L.). Plant Physiology and Biochemistry, 162, 14-26. https://doi.org/10.1016/j.plaphy.2021.02.028
  • Gao, X., Wang, Y., Randell, E., Pedram, P., Yi, Y., Gulliver, W., Sun, G. (2016). Higher dietary choline and betaine intakes are associated with better body composition in the adult population of Newfoundland, Canada. PloS one, 11(5), e0155403. https://doi.org/10.1371/journal.pone.0155403
  • Graham, S. F., Hollis, J. H., Migaud, M., Browne, R. A. (2009). Analysis of betaine and choline contents of aleurone, bran, and flour fractions of wheat (Triticum aestivum L.) using 1H nuclear magnetic resonance (NMR) spectroscopy. Journal of Agricultural and Food Chemistry, 57(5), 1948-1951. https://doi.org/10.1021/jf802885m
  • Hefni, E. M., Schaller, F., Witthöf., M. C. (2018). Betaine, choline and folate content in different cereal genotypes. Journal of Cereal Science, 80, 72-79. https://doi.org/10.1016/j.jcs.2018.01.013
  • Hoffman, J. R., Ratamess, N. A., Kang, J., Rashti, S. L., Faigenbaum, A. D. (2009). Effect of betaine supplementation on power performance and fatigue. Journal of the International Society of Sports Nutrition, 6, 7-17. https://doi.org/10.1186/1550-2783-6-7
  • James, S. J., Melnyk, S., Jernigan, S., Cleves, M. A., Halsted, C. H., Wong, D. H., Cutler, P., Bock, K., Boris, M., Bradstreet, J. J., Baker, S. M., Gaylor, D. W. (2006). Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 141(8), 947-956. https://doi.org/10.1002/ajmg.b.30366
  • Kaur, S., Sharma, N., Vyas, M., Mahajan, R., Satija, S., Mehta, M., Khurana, N. (2019). A review on pharmacological activities of betaine. Plant Archives, 19(2), 1021-1034.
  • Koistinen, V. M., Kärkkäinen, O., Borewicz, K., Zarei, I., Jokkala, J., Micard, V., Rosa-Sibakov, N., Auriola, S., Aura, A. M., Smidt, H., Hanhineva, K. (2019). Contribution of gut microbiota to metabolism of dietary glycine betaine in mice and in vitro colonic fermentation. Microbiome, 7(1), 1-14. https://doi.org/10.1186/s40168-019-0718-2
  • Kojić, J., Krulj, J., Ilić, N., Lonćar, E., Pezo, L., Mandić, A., Solarov, M. B. (2017). Analysis of betaine levels in cereals, pseudocereals and their products. Journal of Functional Foods, 37, 157-163. https://doi.org/10.1016/j.jff.2017.07.052
  • Kojić, J. S., Ilić, N. M., Kojić, P. S., Pezo, L. L., Banjac, V. V., Krulj, J. A., Bodroža Solarov, M. I. (2019). Multiobjective process optimization for betaine enriched spelt flour based extrudates. Journal of Food Process Engineering, 42(1), e12942. https://doi.org/10.1111/jfpe.12942
  • Lawson-Yuen, A., Levy, H. L. (2006). The use of betaine in the treatment of elevated homocysteine. Molecular Genetics and Metabolism, 88(3), 201-207. https://doi.org/10.1016/j.ymgme.2006.02.004
  • Li, S., Xu, S., Zhao, Y., Wang, H., Feng, J. (2020). Dietary betaine addition promotes hepatic cholesterol synthesis, bile acid conversion, and export in rats. Nutrients, 12(5), 1399. https://doi.org/10.3390/nu12051399
  • Likes, R., Madl, R. L., Zeisel, S. H., Craig, S. A. S. (2007). The betaine and choline content of a whole wheat flour compared to other mill streams. Journal of Cereal Science, 46, 93-95. https://10.1016/j.jcs.2006.11.002
  • Melnyk, S., Fuchs, G. J., Schulz, E., Lopez, M., Kahler, S. G., Fussell, J. J., Bellando, J., Pavliv, O., Rose, S., Seidel, L., Gaylor, D. W., James, S. J. (2012). Metabolic imbalance associated with methylation dysregulation and oxidative damage in children with autism. Journal of Autism and Developmental Disorders, 42, 367-377. https://doi.org/10.1007/s10803-011-1260-7
  • Naresh Chary, V., Dinesh Kumar, C., Vairamani, M., Prabhakar, S. (2012). Characterization of amino acid‐derived betaines by electrospray ionization tandem mass spectrometry. Journal of Mass Spectrometry, 47(1), 79-88. https://doi.org/10.1002/jms.2029
  • Obeid, R. (2013). The metabolic burden of methyl donor deficiency with focus on the betaine homocysteine methyltransferase pathway. Nutrients, 5, 3481-3495. https://doi.org/10.3390/nu5093481
  • Osman, H.S. (2015). Enhancing antioxidant yield relationship of pea plant under drought at different growth stages by exogenously applied glycine betaine and proline. Annals of Agricultural Sciences, 60, 389-402. https://doi.org/10.1016/j.aoas.2015.10.004
  • Park, E. I., Garrow, T. A. (1999). Interaction between dietary methionine and methyl donor intake on rat liver betaine-homocysteine methyltransferase gene expression and organization of the human gene. Journal of Biological Chemistry, 274, 7816-7824. https://doi.org/10.1074/jbc.274.12.7816
  • Perović, J. N., Kojić, J. S., Škrobot, D. J., Krulj, J. A., Peić-Tukuljac, L. E., Ilić, N. M., Bodroža-Solarov, M. I. (2019). Betaine content in buckwheat enriched wholegrain wheat pasta. Acta Periodica Technologica, 50, 197-203. https://doi.org/10.2298/APT1950197P
  • Ross, A. B., Zangger, A., Guiraud, S. P. (2014). Cereal foods are the major source of betaine in the Western diet- Analysis of betaine and free choline in cereal foods and updated assessments of betaine intake. Food Chemistry, 145, 859-865. https://doi.org/10.1016/j.foodchem.2013.08.122
  • Saarinen, M. T., Kettunen, H., Pulliainen, K., Peuranen, S., Tiihonen, K., Remus, J. (2001). A novel method to analyze betaine in chicken liver: Effect of dietary betaine and choline supplementation on the hepatic betaine concentration in broiler chicks. Journal of Agricultural and Food Chemistry, 49, 559-563. https://doi.org/10.1021/jf000675l
  • Sakamoto, A., Nishimura, Y., Ono, H., Sakura, N. (2002). Betaine and homocysteine concentrations in foods. Pediatrics International, 44, 409-413. https://doi.org/10.1046/j.1442-200X.2002.01591.x
  • Sanz-Serrano, J., Vettorazzi, A., Muruzabal, D., Azqueta, A., López de Cerain, A. (2021). In vitro genotoxicity assessment of functional ingredients: Betaine, choline, and taurine. Foods, 10(2), 339. https://doi.org/10.3390/foods10020339
  • Schwab, U., Törrönen, A., Meririnne, E., Saarinen, M., Alfthan, G., Aro, A., Uusitupa, M. (2006). Orally administered betaine has an acute and dose-dependent effect on serum betaine and plasma homocysteine concentrations in healthy humans. The Journal of Nutrition, 136(1), 34-38. https://doi.org/10.1093/jn/137.4.1124a
  • Schwahn, B. C., Hafner, D., Hohlfeld, T., Balkenhol, N., Laryea, M. D., Wendel, U. (2003). Pharmacokinetics of oral betaine in healthy subjects and patients with homocystinuria. British Journal of Clinical Pharmacology, 55, 6-13. https://doi.org/10.1046/j.1365-2125.2003.01717.x
  • Servillo, L., D’Onofrio, N., Giovane, A., Casale, R., Cautela, D., Ferrari, G., Castaldo, D., Balestrieri, M. L. (2018). The betaine profile of cereal flours unveils new and uncommon betaines. Food Chemistry, 239, 234-241. https://doi.org/10.1016/j.foodchem.2017.06.111
  • Slavin, J. (2003). Why whole grains are protective: biological mechanisms. Proceedings of the Nutrition Society, 62(1), 129-134. https://doi.org/10.1079/PNS2002221
  • Slow, S., Donaggio, M., Cressey, P. J., Lever, M., George, P. M., Chambers, S. T. (2005). The betaine content of New Zealand foods and estimated intake in the New Zealand diet. Journal of Food Composition and Analysis, 18, 473-485. https://doi.org/10.1016/j.jfca.2004.05.004
  • Spaggiari, M., Calani, L., Folloni, S., Ranieri, R., Dall'Asta, C., Galaverna, G. (2020). The impact of processing on the phenolic acids, free betaine and choline in Triticum spp. L. whole grains and milling by-products. Food Chemistry, 311, 125940. https://doi.org/10.1016/j.foodchem.2019.125940
  • Steenge, G.R., Verhoef, P., Katan, M.B. (2003). Betaine supplementation lowers plasma homocysteine in healthy men and women. The Journal of Nutrition, 133, 1291-1295. https://doi.org/10.1093/jn/133.5.1291
  • Ueland, P. M. (2011). Choline and betaine in health and disease. Journal of Inherited Metabolic Disease, 34(1), 3-15. https://doi.org/10.1007/s10545-010-9088-4
  • Waggle, D. H., Lambert, M. A., Miller, G. D., Farrel, E. P., Deyoe, C. W. (1967).Extensive analyses of flours and mill feeds made from nine different wheat mixes. II. Amino acids, minerals, vitamins, and gross energy. Cereal Chemistry, 44, 48-60.
  • Wang, C., Liu, Q., Yang, W., Wu, J., Zhang, W., Zhang, P., Dong, K. H., Huang, Y. (2010). Effects of betaine supplementation on rumen fermentation, lactation performance, feed digestibilities and plasma characteristics in dairy cows. The Journal of Agricultural Science, 148(4), 487-495. https://doi.org/10.1017/S0021859610000328
  • Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D., Somero, G. N. (1982).Living with stress: Evolution of osmolyte systems. Science, 217, 1214-1222. https://doi.org/10.1126/science.7112124
  • Zhang, M., Zhang, H., Li, H., Li, X., Tang, Y., Min, T., Wu, H. (2016). Antioxidant mechanism of betaine without free radical scavenging ability. Journal of Agricultural and Food Chemistry, 64, 7921-7930. https://doi.org/10.1021/acs.jafc.6b03592