Mental Foramen ve Aksesuar Mental Foramenin Manyetik Rezonans Görüntüleme ile Retrospektif Değerlendirilmesi

AMAÇ: Bu çalışmanın amacı, Manyetik Rezonans Görüntüleme (MRG) yöntemi kullanarak aksesuar mental foramina (AMF) görülme sıklığını ve anatomik özelliklerini saptamaktır. GEREÇ VE YÖNTEM: Toplam 40 hastaya ait, sağ ve sol olmak üzere koronal, sagittal, aksiyal eksenlerde (n=80) mental foramenin (MF) morfolojik özellikleri değerlendirildi. MF çapı ölçülerek, gözlenen AMF varyasyonları kaydedildi. BULGULAR: Çalışma yaşları 10 ile 75 arasında değişmekte olan, 27’si (%67.5) kadın ve 13’ü (%32.5) erkek olmak üzere 40 olgunun sağ ve sol toplam 80 tarafı ile yapılmıştır. Yaş ortalaması 40.60±18.57 yıldır. Mental foramenlerin 75’inde (%93.8) herhangi bir anatomik varyasyon izlenemezken, 5’inde (%6.3) aksesuar mental foramen gözlenmiştir. Sekans dağılımları %52.5’i T1, %16.3’ü T2 ve %31.3’ü T3’tür. SONUÇ: MRG invaziv olmayan, radyasyon içermeyen bir yumuşak doku görüntüleme yöntemidir. Baş-boyun bölgesine ait nörovasküler dokuların ve bunların anatomik varyasyonlarının değerlendirilmesinde kullanılabilecek yardımcı bir görüntüleme tekniğidir. İşlem öncesi planlamada diş hekimleri, kemik görüntüleme yöntemlerinin yetersiz kaldığı durumlarda baş-boyun bölgesine ait yumuşak dokuların değerlendirilmesinde MRG kullanabilir.

Evaluation of Mental Foramen and Accessory Mental Foramen in Retrospective Magnetic Resonance Images

OBJECTIVES: To determine the prevalence and anatomical features of mental foramen and accessory mental foraminas (AMFs) with Magnetic Resonance Imaging (MRI) method. MATERIALS AND METHODS: A total of 40 patients’ 3.0-Tesla Turbo Spin Echo (3T TSE) MRI sequences were evaluated in both right and left coronal, sagittal, axial sections (n=80) to determine the morphological features of mental foramen (MF). Diameter of MF was measured and presence AMFs were recorded. RESULTS: The study was conducted with a total of 80 right and left sides of 40 subjects, 27 (67.5%) female and 13 (32.5%) male. The mean age was 40.60±18.57 years. AMFs was observed in 75 (93.8%) of the evaluated mental foramens. Accessory mental foramen variation was observed in five of them (6.3%). MRI 3T TSE sequence distributions were 52.5% T1w, 16.3% T2w and 31.3% PD. CONCLUSIONS: MRI is a non-invasive, radiation-free soft tissue imaging method. It is an auxiliary imaging technique that can be used in the evaluation of neurovascular tissues of the head and neck region and their anatomical variations. In pre-operative planning, clinicians can use MRI in the evaluation of soft tissues of the head and neck region in cases where bone imaging methods are insufficient.

___

  • Greenstein G, Tarnow D. The mental foramen and nerve: clinical and anatomical factors related to dental implant placement: a literature review. J Periodontol. 2006 Dec;77(12):1933-43. doi: 10.1902/ jop.2006.060197. PMID: 17209776.
  • Kawai T, Sato I, Asaumi R, Yosue T. Conebeam computed tomography and anatomical observations of normal variants in the mandible: variant dentists should recognize. Oral Radiol. 2018 Sep;34(3):189-198. doi: 10.1007/s11282-017-0307-7. Epub 2017 Nov 18. PMID: 30484034.
  • Kabak SL, Savrasova NA, Melnichenko YM, Zhuravleva NV. Imaging of accessory buccal foramina using cone-beam computed tomography: case reports. Eur J Anat 2017 21(3):189–195.
  • Pelé A, Berry PA, Evanno C, Jordana F. Evaluation of Mental Foramen with Cone Beam Computed Tomography: A Systematic Review of Literature. Radiol Res Pract. 2021 Jan 6;2021:8897275. doi: 10.1155/2021/8897275. PMID: 33505723; PMCID: PMC7806401.
  • Pancer B, Garaicoa-Pazmiño C, Bashutski JD. Accessory mandibular foramen during dental implant placement: case report and review of literature. Implant Dent. 2014 Apr;23(2):116-24. doi: 10.1097/ ID.0000000000000056. PMID: 24637530.
  • Cavalcanti MG, Ruprecht A, Johnson WT, Southard TE, Jakobsen J. Radiologic interpretation of bone striae: an experimental study in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999 Sep;88(3):353-7. doi: 10.1016/s1079- 2104(99)70042-9. PMID: 10503868.
  • Couture RA, Whiting BR, Hildebolt CF, Dixon DA. Visibility of trabecular structures in oral radiographs. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003 Dec;96(6):764-71. doi: 10.1016/j. tripleo.2003.08.013. PMID: 14676770.
  • Wamasing P, Deepho C, Watanabe H, Hayashi Y, Sakamoto J, Kurabayashi T. Imaging the bifid mandibular canal using high resolution MRI. Dentomaxillofac Radiol. 2019 Mar;48(3):20180305. doi: 10.1259/ dmfr.20180305. Epub 2018 Nov 7. PMID: 30346803; PMCID: PMC6476361.
  • Ocbe M, Borahan MO, Cimsit NC. Evaluation of the Inferior Alveolar Nerve with 3 Tesla Turbo Spin Echo Magnetic Resonance Imaging. European Journal of Research in Dentistry, 2022; 6 (2) : 73-79. DOI: http://dx.doi.org/10.29228/ erd.29
  • Eggers G, Rieker M, Fiebach J, Kress B, Dickhaus H, Hassfeld S. Geometric accuracy of magnetic resonance imaging of the mandibular nerve. Dentomaxillofac Radiol. 2005 Sep;34(5):285-91. doi: 10.1259/ dmfr/89236515. PMID: 16120878.
  • Chau A. Comparison between the use of magnetic resonance imaging and cone beam computed tomography for mandibular nerve identification. Clin Oral Implants Res. 2012 Feb;23(2):253-256. doi: 10.1111/j.1600-0501.2011.02188.x. Epub 2011 Apr 13. PMID: 21488971.
  • Kreutner J, Hopfgartner A, Weber D, Boldt J, Rottner K, Richter E, et al. High isotropic resolution magnetic resonance imaging of the mandibular canal at 1.5 T: a comparison of gradient and spin echo sequences. Dentomaxillofac Radiol 2017; 46: 20160268.
  • Beck F, Austermann S, Bertl K, Ulm C, Lettner S, Toelly A, Gahleitner A. Is MRI a viable alternative to CT/CBCT to identify the course of the inferior alveolar nerve in relation to the roots of the third molars? Clin Oral Investig. 2021 Jun;25(6):3861- 3871. doi: 10.1007/s00784-020-03716-4. Epub 2020 Dec 7. PMID: 33289048; PMCID: PMC8137481.
  • Nasel C, Gahleitner A, Breitenseher M, Czerny C, Glaser C, Solar P, Imhof H. Localization of the mandibular neurovascular bundle using dental magnetic resonance imaging. Dentomaxillofac Radiol. 1998 Sep;27(5):305-7. doi: 10.1038/sj/ dmfr/4600379. PMID: 9879221.
  • Burian E, Probst FA, Weidlich D, Cornelius CP, Maier L, Robl T, Zimmer C, Karampinos DC, Ritschl LM, Probst M. MRI of the inferior alveolar nerve and lingual nerve-anatomical variation and morphometric benchmark values of nerve diameters in healthy subjects. Clin Oral Investig. 2020 Aug;24(8):2625-2634. doi: 10.1007/s00784-019-03120-7. Epub 2019 Nov 8. PMID: 31705309.
  • Asghar A, Priya A, Ravi KS, Iwanaga J, Tubbs RS, Naaz S, Panchal P. An evaluation of mandibular canal variations: a systematic review and meta-analysis. Anat Sci Int. 2022 Aug 29. doi: 10.1007/s12565- 022-00682-7. Epub ahead of print. PMID: 36038792.
  • Cassetta M, Pranno N, Pompa V, Barchetti F, Pompa G. High resolution 3-T MR imaging in the evaluation of the trigeminal nerve course. Eur Rev Med Pharmacol Sci. 2014;18(2):257-64. PMID: 24488917.
  • Cassetta M, Pranno N, Pompa V, Barchetti F, Pompa G. High resolution 3-T MR imaging in the evaluation of the trigeminal nerve course. Eur Rev Med Pharmacol Sci. 2014;18(2):257-64. PMID: 24488917.
  • Imamura H, Sato H, Matsuura T, Ishikawa M, Zeze R. A comparative study of computed tomography and magnetic resonance imaging for the detection of mandibular canals and cross-sectional areas in diagnosis prior to dental implant treatment. Clin Implant Dent Relat Res. 2004;6(2):75-81. doi: 10.1111/j.1708-8208.2004.tb00029.x. PMID: 15669707.
  • Murakami S, Maeda Y, Fuchihata H. The role of magnetic resonance imaging in preoperative examination for dental implant. J Jpn Soc Oral Implant 1996; 9:24–28.
  • Assaf AT, Zrnc TA, Remus CC, Schönfeld M, Habermann CR, Riecke B, Friedrich RE, Fiehler J, Heiland M, Sedlacik J. Evaluation of four different optimized magnetic-resonance-imaging sequences for visualization of dental and maxillo- mandibular structures at 3 T. J Craniomaxillofac Surg. 2014 Oct;42(7):1356-63. doi: 10.1016/j.jcms.2014.03.026. Epub 2014 Apr 13. PMID: 24837485.
  • Han SS, Hwang JJ, Jeong HG. Accessory mental foramina associated with neurovascular bundle in Korean population. Surg Radiol Anat. 2016 Dec;38(10):1169-1174. doi: 10.1007/s00276-016-1680-3. Epub 2016 May 4. PMID: 27146294.
  • Aytugar E, Özeren C, Lacin N, Veli I, Çene E. Cone-beam computed tomographic evaluation of accessory mental foramen in a Turkish population. Anat Sci Int. 2019 Jun;94(3):257-265. doi: 10.1007/s12565- 019-00481-7. Epub 2019 Feb 21. PMID: 30790181.
  • Iwanaga J, Watanabe K, Saga T, Tabira Y, Kitashima S, Kusukawa J, Yamaki K. Accessory mental foramina and nerves: Application to periodontal, periapical, and implant surgery. Clin Anat. 2016 May;29(4):493- 501. doi: 10.1002/ca.22635. Epub 2015 Oct 10. PMID: 26399214.
  • Li Y, Yang X, Zhang B, Wei B, Gong Y. Detection and characterization of the accessory mental foramen using conebeam computed tomography. Acta Odontol Scand. 2018 Mar;76(2):77-85. doi: 10.1080/00016357.2017.1382715. Epub 2017 Sep 28. PMID: 28956507.
  • Muinelo-Lorenzo J, Fernández-Alonso A, Smyth-Chamosa E, Suárez-Quintanilla JA, Varela-Mallou J, Suárez-Cunqueiro MM. Predictive factors of the dimensions and location of mental foramen using cone beam computed tomography. PLoS One. 2017 Aug 17;12(8):e0179704. doi: 10.1371/ journal.pone.0179704. PMID: 28817595; PMCID: PMC5560523
  • Goyushov S, Tözüm MD, Tözüm TF. Assessment of morphological and anatomical characteristics of mental foramen using cone beam computed tomography. Surg Radiol Anat. 2018 Oct;40(10):1133- 1139. doi: 10.1007/s00276-018-2043-z. Epub 2018 May 25. PMID: 29802432.
  • Krishnan U, Monsour P, Thaha K, Lalloo R, Moule A. A Limited Field Conebeam Computed Tomography-based Evaluation of the Mental Foramen, Accessory Mental Foramina, Anterior Loop, Lateral Lingual Foramen, and Lateral Lingual Canal. J Endod. 2018 Jun;44(6):946-951. doi: 10.1016/j.joen.2018.01.013. Epub 2018 Mar 15. PMID: 29550007.
  • Dos Santos Oliveira R, Rodrigues Coutinho M, Kühl Panzarella F. Morphometric Analysis of the Mental Foramen Using Cone-Beam Computed Tomography. Int J Dent. 2018 Mar 26;2018:4571895. doi: 10.1155/2018/4571895. PMID: 29785185; PMCID: PMC5892272.
  • Alsoleihat F, Al-Omari FA, Al-Sayyed AR, Al-Asmar AA, Khraisat A. The mental foramen: A cone beam CT study of the horizontal location, size and sexual dimorphism amongst living Jordanians. Homo. 2018 Nov;69(6):335-339. doi: 10.1016/j. jchb.2018.11.003. Epub 2018 No unqueiro MM. Anatomical characteristics and visibility of mental foramen and accessory mental foramen: Panoramic radiography vs. cone beam CT. Med Oral Patol Oral Cir Bucal. 2015 Nov 1;20(6):e707-14. doi: 10.4317/medoral.20585. PMID: 26449429; PMCID: PMC4670251.
  • Naitoh M, Hiraiwa Y, Aimiya H, Gotoh K, Ariji E. Accessory mental foramen assessment using cone-beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009 Feb;107(2):289- 94. doi: 10.1016/j.tripleo.2008.09.010. Epub 2008 Dec 13. PMID: 19071039.
  • Oliveira-Santos C, Souza PH, De Azambuja Berti-Couto S, Stinkens L, Moyaert K, Van Assche N, Jacobs R. Characterisation of additional mental foramina through cone beam computed tomography. J Oral Rehabil. 2011 Aug;38(8):595-600. doi: 10.1111/j.1365-2842.2010.02186.x. Epub 2010 Dec 11. PMID: 21143619.
  • Sisman Y, Sahman H, Sekerci A, Tokmak TT, Aksu Y, Mavili E. Detection and characterization of the mandibular accessory buccal foramen using CT. Dentomaxillofac Radiol. 2012 Oct;41(7):558- 63. doi: 10.1259/dmfr/63250313. Epub 2012 Apr 12. PMID: 22499130; PMCID: PMC3608376.