DİŞ HEKİMLİĞİNDE KULLANILAN YÜKSEK PERFORMANSLI POLİ-ARİL-ETER-KETON (PAEK) POLİMERLERİ

Poli-eter-eter-keton (PEEK) ve poli-eter-keton-keton (PEKK) yüksek performanslı poli-aril-eter-keton (PAEK) ailesinin en çok bilinen iki üyesidir. PEEK ve PEKK, keton ve eter fonksiyonel gruplarının birbirine bağlandığı aromatik polimer yapısında termoplastik materyallerdir. Tıbbı alanda kullanılan PAEK polimer ailesi, son zamanlarda diş hekimliği alanında da kullanılmaya başlamıştır. Diş hekimliğinde geleneksel olarak kullanılan metal altyapı materyalleri ile benzer mekanik özellikler göstermesi, bunlara ek olarak daha estetik restorasyonların üretilmesine olanak sağlaması, CAD/CAM teknolojisi ile üretilebilmesi, biyouyumlu olması gibi avantajlı özelliklerinden dolayı PAEK polimer ailesi metal restorasyonlara bir seçenek olmaktır. Diş hekimliğinde PAEK polimerlerinin kullanım alanı gün geçtikçe artmakla beraber, dental olarak kullanılan geleneksel materyallere alternatif olabileceğinden dolayı bu konu üzerine birçok araştırma yapılmaktır. Bu derlemenin amacı, diş hekimliğinde kullanılan PAEK polimerlerinin özelliklerini ve kullanım alanlarını araştırmaktır.

HIGH PERFORMANCE POLY-ARYL-ETHER-KETONE (PAEK) POLYMERS USED IN DENTISTRY

Poly-ether-ether-ketone (PEEK) and poly-ether-ketone-ketone (PEKK) are the two best-known members of the high-performance poly-aryl-ether-ketone (PAEK) family. PEEK and PEKK are thermoplastic materials in aromatic polymer structures in which ketone and ether functional groups are bonded to each other. PAEK polymer family, which is used in the medical field, has recently started to be used in the field of dentistry. PAEK polymer family is an option for metal restorations due to its advantageous features such as showing similar mechanical properties with metal infrastructure materials traditionally used in dentistry, enabling the production of more aesthetic restorations in addition to these, being produced with CAD/CAM technology and being biocompatible. Although the usage area of PAEK polymers in dentistry is increasing day by day, many types of research are carried out on this subject as it can be an alternative to the traditional materials used in dentistry. This review aims to investigate the properties and usage areas of PAEK polymers used in dentistry.

___

  • 1.Ortega-Martínez J, Farré-Lladós M, Cano-Batalla J, Cabratosa-Termes J. Polyetheretherketone (PEEK) as a medical and dental material. A literature review.Arch Med Res May 2017;5(5):01-16.
  • 2.Alqurashi H, Khurshid Z, Syed AUY, Rashid Habib S, Rokaya D, Zafar MS. Polyetherketoneketone (PEKK): An emerging biomaterial for oral implants and dental prostheses. J Adv Res 2020;28:87-95. 3.Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007;28(32):4845-4869.
  • 4.Fuhrmann G, Steiner M, Freitag-Wolf S, Kern M. Resin bonding to three types of polyaryletherketones (PAEKs)-durability and influence of surface conditioning. Dent Mater 2014;30(3):357-363.
  • 5.Stawarczyk B, Jordan P, Schmidlin PR, et al. PEEK surface treatment effects on tensile bond strength to veneering resins. J Prosthet Dent 2014;112(5):1278-1288.
  • 6.Laurence W. McKeen, 12- High Temperature/High-Performance Polymers, In Plastics Design Library, Third Edition, Film Properties of Plastics and Elastomers, Laurence W. McKeen, William Andrew Publishing: 2012, 315-337, 9781455725519.
  • 7.Bruner HJ, Guan Y, Yoganandan N, Pintar FA, Maiman DJ, Slivka MA. Biomechanics of polyaryletherketone rod composites and titanium rods for posterior lumbosacral instrumentation. Presented at the 2010 Joint Spine Section Meeting. Laboratory investigation. J Neurosurg Spine 2010;13(6):766-772.
  • 8.Tekin, S.; Cangül, S.; Adıgüzel, Özkan; Değer, Y. Areas for Use of PEEK Material in Dentistry. idr 2018, 8, 84-92.
  • 9.Ali Z, Baker S, Sereno N, Martin N. A Pilot Randomized Controlled Crossover Trial Comparing Early OHRQoL Outcomes of Cobalt-Chromium Versus PEEK Removable Partial Denture Frameworks. Int J Prosthodont 2020;33(4):386-392.
  • 10.Li RW, Chow TW, Matinlinna JP. Ceramic dental biomaterials and CAD/CAM technology: state of the art. J Prosthodont Res 2014;58(4):208-216.
  • 11.Alvaredo-Atienza Á, Chen L, San-Miguel V, Ridruejo Á, Fernández-Blázquez JP. Fabrication and Characterization of PEEK/PEI Multilayer Composites. Polymers 2020; 12(12):2765.
  • 12.Schwitalla A, Müller WD. PEEK dental implants: a review of the literature. J Oral Implantol 2013;39(6):743-749.
  • 13.Korn P, Elschner C, Schulz MC, Range U, Mai R, Scheler U. MRI and dental implantology: two which do not exclude each other. Biomaterials 2015;53:634-645.
  • 14.Toth JM, Wang M, Estes BT, Scifert JL, Seim HB 3rd, Turner AS. Polyetheretherketone as a biomaterial for spinal applications. Biomaterials 2006;27(3):324-334.
  • 15.Kizuki T, Matsushita T, Kokubo T. Apatite-forming PEEK with TiO2 surface layer coating. J Mater Sci Mater Med 2015;26(1):5359.
  • 16.Martin RB, Ishida J. The relative effects of collagen fiber orientation, porosity, density, and mineralization on bone strength. J Biomech 1989;22(5):419-426.
  • 17.Sano H, Ciucchi B, Matthews WG, Pashley DH. Tensile properties of mineralized and demineralized human and bovine dentin. J Dent Res 1994;73(6):1205-1211.
  • 18.Sandler, Jan Kurt Walter, Philipp Werner, Milo S. P. Shaffer, Vitaly Demchuk, Volker Altstädt and Alan H. Windle. “Carbon-nanofibre-reinforced poly (ether ether ketone) composites.” Composites Part A-applied Science and Manufacturing 33 (2002): 1033-1039.
  • 19.J.W.H. Bonner, Aromatic polyketones and preparation thereof. U.S. Patent 3, 065, 205; 1962. p. 1–3.
  • 20.Kewekordes T, Wille S, Kern M. Wear of polyetherketoneketones- Influence of titanium dioxide content and antagonistic material. Dent Mater 2018;34(3):560-567.
  • 21.Guo R, Mc Grath J. Polymer science: a comprehensive reference. In: Matyjaszewski K, Möller M, Amsterdam: Elsevier: 2012. p. 377-430.
  • 22.Song CH, Choi JW, Jeon YC, et al. Comparison of the Micro tensile Bond Strength of a Polyetherketoneketone (PEKK) Tooth Post Cemented with Various Surface Treatments and Various Resin Cement. Materials (Basel) 2018;11(6):916.
  • 23.Mouhyi J, Dohan Ehrenfest DM, Albrektsson T. The peri-implantitis: implant surfaces, microstructure, and physicochemical aspects. Clin Implant Dent Relat Res 2012;14(2):170-183.
  • 24.Lautenschlager EP, Monaghan P. Titanium and titanium alloys as dental materials. Int Dent J 1993;43(3):245-253.
  • 25.Goutam M, Giriyapura C, Mishra SK, Gupta S. Titanium allergy: a literature review. Indian J Dermatol 2014;59(6):630.
  • 26.Di Maggio B, Sessa P, Mantelli P, et al. PEEK radiolucent plate for distal radius fractures: multicentre clinical results at 12 months follow up. 2017;48(3): S34-S38.
  • 27. Gheisarifar M, Thompson GA, Drago C, Tabatabaei F, Rasoulianboroujeni M. In vitro study of surface alterations to polyetheretherketone and titanium and their effect upon human gingival fibroblasts. J Prosthet Dent 2021;125(1):155-164.
  • 28. Guo L, Smeets R, Kluwe L, et al. Cytocompatibility of Titanium, Zirconia and Modified PEEK after Surface Treatment Using UV Light or Non-Thermal Plasma. Int J Mol Sci 2019;20(22):5596.
  • 29. Cook SD, Rust-Dawicki AM. Preliminary evaluation of titanium-coated PEEK dental implants. J Oral Implantol 1995;21(3):176-181.
  • 30. Alsadon O, Wood D, Patrick D, Pollington S. Fatigue behavior and damage modes of high-performance poly-ether-ketone-ketone PEKK bilayered crowns. J Mech Behav Biomed Mater 2020;110:103957.
  • 31. Amelya A, Kim JE, Woo CW, Otgonbold J, Lee KW. Load-Bearing Capacity of Posterior CAD/CAM Implant-Supported Fixed Partial Dentures Fabricated with Different Esthetic Materials Int J Prosthodont. 2019;32(2):201-204. 32. Passia N, Ghazal M, Kern M. Long-term retention behavior of resin matrix attachment systems for overdentures. J Mech Behav Biomed Mater 2016;57:88-94.
  • 33. Stawarczyk B, Beuer F, Wimmer T, et al. Polyetheretherketone-a suitable material for fixed dental prostheses?. J Biomed Mater Res B Appl Biomater. 2013;101(7):1209-1216.
  • 34. Tipton P. High-performance polymers -Part one. Private Dentistry, October, 2015:60-65.
  • 35. Magne P. Composite resins and bonded porcelain: the post-amalgam era?. J Calif Dent Assoc 2006;34(2):135-147.
  • 36. Liaw, C. Y., Tolbert, J. W., Chow, L. W., and Guvendiren, M. The interlayer bonding strength of 3D printed PEEK specimens. Soft matter 2021;17(18), 4775–4789.
  • 37. Beuer F, Steff B, Naumann M, Sorensen JA. Load-bearing capacity of all-ceramic three-unit fixed partial dentures with different computer-aided design (CAD)/computer-aided manufacturing (CAM) fabricated framework materials. Eur J Oral Sci 2008;116(4):381-386.
  • 38. Stawarczyk B, Eichberger M, Uhrenbacher J, Wimmer T, Edelhoff D, Schmidlin PR. Three-unit reinforced polyetheretherketone composite FDPs: influence of fabrication method on load-bearing capacity and failure types. Dent Mater J 2015;34(1):7-12.
  • 39. Sproesser O, Schmidlin PR, Uhrenbacher J, Roos M, Gernet W, Stawarczyk B. Effect of sulfuric acid etching of polyetheretherketone on the shear bond strength to resin cement. J Adhes Dent 2014;16(5):465-472.
  • 40. Sloan R, Hollis W, Selecman A, Jain V, Versluis A. Bond strength of lithium disilicate to polyetheretherketone [published online ahead of print, 2021 Apr 10]. J Prosthet Dent 2021; S0022-3913(21)00110-4.
  • 41. Tsuka H, Morita K, Kato K, et al. Effect of laser groove treatment on shear bond strength of resin-based luting agent to polyetheretherketone (PEEK). J Prosthodont Res 2019;63(1):52-57.
  • 42. Choi JW, Song EJ, Shin JH, Jeong TS, Huh JB. In Vitro Investigation of Wear of CAD/CAM Polymeric Materials Against Primary Teeth. Materials (Basel) 2017;10(12):1410.
  • 43. Gouveia DDNM, Razzoog ME, Sierraalta M, Alfaro MF. Effect of surface treatment and manufacturing process on the shear bond strength of veneering composite resin to polyether ketone ketone (PEKK) and polyetheretherketone (PEEK). J Prosthet Dent 2021; S0022-3913(21)00069-X.
  • 44. Zoidis P, Papathanasiou I, Polyzois G. The Use of a Modified Poly-Ether-Ether-Ketone (PEEK) as an Alternative Framework Material for Removable Dental Prostheses. A Clinical Report. J Prosthodont 2016;25(7):580-584.
  • 45. Muhsin SA, Hatton PV, Johnson A, Sereno N, Wood DJ. Determination of Polyetheretherketone (PEEK) mechanical properties as a denture material. Saudi Dent J 2019;31(3):382-391.
  • 46. Mayinger F, Fiebig M, Roos M, Eichberger M, Lümkemann N, Stawarczyk B. Bonding Behavior Between Polyetheretherketone and Polymethylmethacrylate Acrylic Denture Polymer. J Adhes Dent 2021;23(2):145-158.
  • 47. Papathanasiou I, Papavasiliou G, Kamposiora P, Zoidis P. Effect of Staining Solutions on Color Stability, Gloss and Surface Roughness of Removable Partial Dental Prosthetic Polymers. J Prosthodont 2022;31(1):65-71.
  • 48. Sun F, Shen X, Zhou N, et al. A speech bulb prosthesis for a soft palate defect with a polyether ketone ketone (PEKK) framework fabricated by multiple digital techniques: A clinical report. J Prosthet Dent 2020;124(4):495-499.
  • 49. Tannous F, Steiner M, Shahin R, Kern M. Retentive forces and fatigue resistance of thermoplastic resin clasps. Dent Mater 2012;28(3):273-278.
  • 50. Ding, L., Lu, W., Chen, X., Xi, Q., Wu, G. Complete denture fabrication with polyether ketone as a framework material: A clinical report. The Journal of prosthetic dentistry 2021;(20)30739-3.