Taşıt Lastik Tozlarının Toprak Enzim Aktiviteleri Üzerine Etkilerinin Belirlenmesi

Taşıtlardan kaynaklanan çevresel kirlilik ülkemiz için büyük bir sorun oluşturmaktadır. Yapılan çalışmalar genellikle egzozdan kaynaklıpartikül maddeler üzerine yoğunlaşmış olup taşıt lastiklerinin sürtünmesiyle oluşan lastik tozlarının çevresel etkileri üzerinde daha azdurulmuştur. Bu çalışmada, sürtünme sonucu toz haline gelerek yol kenarlarındaki topraklara karışan taşıt lastiklerinin, bazı toprakverimlilik parametreleri üzerindeki etkilerinin laboratuvarda yürütülen bir inkübasyon çalışmasıyla ortaya konulması amaçlanmıştır.Çalışma kapsamında topraklara %1, %5 ve %10 oranlarını sağlayacak miktarlarda taşıt lastiği tozu eklenmiş ve 45 gün süren inkübasyonsüresince alınan örneklerde arginin amonifikasyon hızı ile üreaz ve alkali fosfataz enzim aktivitelerindeki değişimler incelenmiştir.Çalışmada ayrıca lastik tozu uygulanmış topraklara atıksu arıtma çamuru ilave edilerek çamurun bu topraklardaki iyileştirici etkisi dedeğerlendirilmiştir. İnkübasyon çalışması sonuçları lastik tozu uygulanan topraklardaki üreaz aktivitesi değerlerinin kontrol değerlerinegöre önemli şekilde (%90-95) düştüğünü göstermektedir. Benzer şekilde, %10 oranında uygulanan lastik tozları, topraktaki argininamonifikasyon hızı değerleri üzerinde inhibisyon etkisi göstermiştir (%81). Lastik tozu uygulanan topraklara yapılan arıtma çamuruuygulaması aktivite değerlerini belirgin şekilde yükseltmiştir. Diğer taraftan çalışmada uygulanan oranlardaki lastik tozununtopraklardaki alkali fosfataz aktivitesini inhibe etmediği görülmüştür. Sonuç olarak yürütülen çalışma ışığında, topraktakiamonifikasyon proseslerinin taşıt lastik tozlarından kaynaklanan kirliliğe daha duyarlı olduğu sonucuna varılmıştır.

Determination of the Effects of Vehicle Tire Dusts on Soil Enzyme Activities

Environmental pollution from vehicles is a major problem for our country. Studies have generally focused on particulate matter originating from the exhaust, and the environmental effects of vehicle tire dusts have been less emphasized. In this study, it is aimed to reveal the effects of vehicle tires which are pulverized by the effect of friction and reached to the roadside soils, on some soil fertility parameters by a laboratory incubation study. Vehicle tire dust samples were added to the soils with doses of 1%, 5% and 10% and the samples, taken during the 45 days incubation period, were examined for the variation in arginine amonification rate, urease and alkaline phosphatase enzyme activities. In addition, wastewater sludge sample was added to the soils treated with tire dust and the biostimulating effect of wastewater sludges on these soils has been evaluated. The results show that the values of urease activity in soils treated with tire dust decreased significantly (90-95%) with respect to to the control values. Tire dust application at dose of 10% showed an inhibition effect on arginine amonification rate values in soil (81%). The application of the wastewater sludge to the tire dust amended soil significantly increased the activity values. It’s also found that tire dust didn’t inhibit alkaline phosphatase activity in soils. Accordingly, it is concluded that the ammonification processes in soil were found to be more susceptible to pollution from tire dusts.

___

  • Albiach, R., Canet, R., Pomares, F. & Ingelmo, F. (2000). Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil, Bioresource Technology, 75 (1), 43-48. doi:10.1016/S0960-8524(00)00030-4
  • Alef, K., & Kleiner, D. (1986). Arginine ammonification, a simple method to estimate microbial activity potentials in soil. Soil Biology and Biochemistry, 18: 233–235. doi:10.1016/0038-0717(86)90033-7
  • Amato, F., Viana, M., Richard, A., Furger, M., Prevot, A.S.H., Nava, S., Lucarelli, F., Bukowiecki, N., Alastuey, A., Reche, C., Moreno, T., Pandolfi, M., Pey, J. & Querol, X. (2011). Size and time-resolved roadside enrichment of atmospheric particulate pollutants. Atmospheric Chemistry and Physics, 11, 2917-2931. doi: 10.5194/acp-11-2917-2011
  • APHA (1998) Standard Methods for the examination of water and wastewater. 20. Edition, Baltimore: American Public Health Association.
  • AQEG (2005). Particulate matter in the United Kingdom. London: DEFRA.
  • Bandick, A. K. & R. P. Dick. (1999). Field management effect on soil enzyme activities, Soil Biology and Biochemistry, 31(11), 1471- 1479. doi: 10.1016/S0038-0717(99)00051-6
  • Bremner, J. M. & Mulvaney, C. S. (1982). Nitrogen-total. In: Page A.L, Miller R.H & Keeney D.R. (Der.), Methods of soil analysis. Part 2. Chemical and microbiological properties içinde (595-622). Madison, WI: ASA and SSSA.
  • Chow, J. C., Watson, J. G., Ashbaugh, L. L. & Magliano, K. L. (2003). Similarities and differences in PM10 chemical source profiles for geological dust from the San Joaquin Valley, California. Atmospheric Environment, 37, 1317-1340. doi: 10.1016/S1352- 2310(02)01021-X
  • Ciarkowska, K., Solek-Podwika, K. & Wieczorek, J. (2004). Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area, Journal of Environmental Management, 132, 250-256. doi: 10.1016/j.jenvman.2013.10.022
  • Cobert, A. (2009). Environmental comparison of Michelin Tweel™ and pneumatic tire using life cycle analysis. Yüksek Lisans Tezi, Georgia: Georgia Institute of Technology.
  • Dave, G. (2013). Ecotoxicological risk assessment and management of tire wear particles. In: Férard J.F., Blaise C. (Der.) Encyclopedia of aquatic ecotoxicology içinde. Dordrecht: Springer. Dave, G., Ecotoxicological Risk Assessment and Management of Tire Wear Particles. Springer, Netherlands, Encyclopedia of Aquatic Ecotoxicology, doi: 10.1007/978-94-007-5704-2
  • De Silva, S., Ball, A. S., Huynh, T. & Reichman, S.M. (2016). Metal accumulation in roadside soil in Melbourne, Australia: Effect of road age, traffic density and vehicular speed. Environmental Pollution, 208, 102-109, doi: 10.1016/j.envpol.2015.09.032
  • Duan, C., Fang, L., Yang, C., Chen, W., Cui, Y. & Li, S. (2018). Reveal the response of enzyme activities to heavy metals through in situ zymography. Ecotoxicology and Environmental Safety, 156,106-115. doi: 10.1016/j.ecoenv.2018.03.015.
  • Gee, G. W. Bauder, J. W. (1982). Particle size analysis. In: Klute A. (Der.), Methods of soil analysis, Part 1. Physical and minerological methods içinde (384-412). Madison, WI: ASA and SSSA.
  • Gualtieri, M., Andrioletti, M., Mantecca, P., Vismara, C. & Camatini, M. (2005). Impact of tire debris on in vitro and in vivo systems. Particle and Fibre Toxicology, 2, 1, doi: 10.1186/1743-8977-2-1
  • Harris, S. J., & Maricq, M. M. (2001). Signature size distributions for diesel and gasoline engine exhaust particulate matter. Journal of Aerosol Science, 32, 749-764. doi: 10.1016/S0021-8502(00)00111-7
  • Herrero, P., Borrull, F., Pocurull, E. & Marce, R.M. (2014). An overview of analytical methods and occurrence of benzotriazoles, benzothiazoles and benzenesulfonamides in the environment. Trac-Trends in Analytical Chemistry, 62, 46-55. doi: 10.1016/j.trac.2014.06.017
  • Hildemann, L. M., Markowski, G. R. & Cass, G. R. (1991). Chemical-composition of emissions from urban sources of fine organic aerosol. Environmental Science and Technology, 25, 744-759. doi: 10.1021/es00016a021
  • Holmén, B. A. & Ayala, A. (2002). Ultrafine PM emissions from natural gas, oxidation-catalyst diesel, and particle-trap diesel heavyduty transit buses. Environmental Science and Technology, 36, 5041–5050. doi: 10.1021/es015884g.
  • Keeney, D. R. & Nelson, D. W. (1982). Nitogen-inorganic forms. In: Page A.L, Miller R.H & Keeney D.R. (Der.), Methods of soil analysis. Part 2. Chemical and microbiological properties içinde (643-693). Madison, WI: ASA and SSSA.
  • Knothe, G., Sharp, C. A. & Ryan, T. W. (2006). Exhaust emissions of biodiesel, petrodiesel, neat methyl esters, and alkanes in a new technology engine. Energy Fuels, 20, 403-408. doi: 10.1021/ef0502711
  • Legret, M. & Pagotto, C. (1999). Evaluation of pollutant loadings in the runoff waters from a major rural highway. The Science of the Total Environment, 235, 143-150. doi: 10.1016/S0048-9697(99)00207-7
  • Mantecca, P., Gualtieri, M., Andrioletti, M., Bacchetta, R., Vismara, C., Vailati, G. & Camatini, M. (2007). Tire debris organic extract affects Xenopus development. Environment International, 33, 642–648. doi: 10.1016/j.envint.2007.01.007
  • Mc Lean, E. O. (1982). Soil pH and lime requirement. In: Page A.L, Miller R.H & Keeney D.R. (Der.), Methods of soil analysis. Part 2. Chemical and microbiological properties içinde (199-224). Madison, WI: ASA and SSSA.
  • Nelson, D. W. & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. In: Page A.L, Miller R.H & Keeney D.R. (Der.), Methods of soil analysis. Part 2. Chemical and microbiological properties içinde (539-579). Madison, WI: ASA and SSSA.
  • Olsen, S.R. & Sommers, L.E. (1982). Phosphorus. In: Page A.L, Miller R.H & Keeney D.R. (Der.), Methods of soil analysis. Part 2. Chemical and microbiological properties içinde (403-430). Madison, WI: ASA and SSSA.
  • Rhoades, J. D. (1982). Soluble Salts. In: Page A.L, Miller R.H & Keeney D.R. (Der.), Methods of soil analysis. Part 2. Chemical and microbiological properties içinde (285-290). Madison, WI: ASA and SSSA.
  • Sadiktsis, I., Bergvall, C., Johansson, C. & Westerholm, R. (2012). Automobile tires-a potential source of highly carcinogenic dibenzopyrenes to the environment. Environmental Science and Technology, 46, 3326-3334. doi: 10.1021/es204257d
  • Sánchez-López, A. S., Carrillo-González, R., González-Chávez, M. D. C. A., Rosas-Saito, G. H. & Vangronsveld, J. (2015). Phytobarriers: Plants capture particles containing potentially toxic elements originating from mine tailings in semiarid regions. Environmental Pollution, 205, 33-42. doi: 10.1016/j.envpol.2015.05.010
  • San Miguel, G., Fowler, G. D. & Sollars C. J. (2002). The leaching of inorganic species from activated carbons produced from waste tyre rubber. Water Research, 36(8), 1939-1946. doi: 10.1016/S0043-1354(01)00422-5
  • Schulz, M. (1987). Effects of ground rubber on Phaseolus vulgaris. Journal of Plant Nutrition and Soil Science, 150, 37–41. doi: 10.1002/jpln.19871500108
  • Tabatabai, M. A. (1982). Soil enzymes. In: Page A.L, Miller R.H & Keeney D.R. (Der.), Methods of soil analysis, Part 2. Chemical and microbiological properties içinde (903-943). Madison, WI: ASA and SSSA.
  • Wik, A. (2007). Toxic components leaching from tire rubber. Bulletin of Environmental Contamination and Toxicology, 79, 114–119. doi: 10.1007/s00128-007-9145-3
  • Wik, A. & Dave, G. (2006). Acute toxicity of tire rubber leachates to Daphnia magna–variability and toxic components. Chemosphere, 64, 1777-1784. doi: 10.1016/j.chemosphere.2005.12.045
  • Wiseman, C. L., Zereini, F. & Püttmann, W. (2014). Metal translocation patterns in Solanum melongena grown in close proximity to traffic. Environment Science and Pollution Research, 21 (2), 1572–1581. doi: 10.1007/s11356-013-2039-5
  • Yakaboylu, O. (2010). Atık lastik yönetimi ve atık lastik pirolizi model tesisi için yapılabilirlik çalışması. Yüksek Lisans Tezi, İstanbul: İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü.
  • Yang, Z. X., Liu, S. Q., Zheng D. W. & Feng S. D. (2006). Effects of cadmium, zinc and lead on soil enzyme activities. Journal of Environmental Sciences, 18 (6), 1135-1141. doi: 10.1007/s11356-009-0134-4
  • Zhang, H., Wang, Z. F., Zhang, Y. L., Ding, M. J. & Li, L. H. (2015). Identification of traffic-related metals and the effects of different environments on their enrichment in roadside soils along the Qinghai–Tibet highway. Science of the Total Environment, 521, 160– 172. doi: 10.1016/j.scitotenv.2015.03.054
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç