Combined Utilization of $KMNO_4$ Modified Starch Particles with Glycerol as De-Icer

Nişasta ile modifiye edilmiş KMnO4 (MS partikülü) ile gliserin çözeltisinden oluşan biyobozunur bir buz çözücü sistemi sunulan çalışma ile önerilmiş ve test edilmiştir. Deneyler değişen KMnO4 (10, 15, 25%), MS partikül, gliserin % (20, 40, 60) ve çözücü miktarları (3, 6, 12 ml) ile gerçekleştirilmiştir. Çalışmanın temel hedefi gliserin ve $KMNO_4$ arasında ufak çaplı ekzotermik bir reaksiyonu tetiklemek ve reaksiyon sonucu açığa çıkan ısı ile buzun erimesini hızlandırmaktadır. Denemeler iki gruba ayrılmıştır. İlk olarak en yüksek sıcaklık artışını sağlayan en iyi koşullar istatistiksel olarak belirlenmiş ve buradan elde edilen sonuçların değerlendirilmesi ile buz çözme denemeleri gerçekleştirilmiştir. İstatistiksel analizler KMnO4 ve MS partikül miktarlarının erime zamanının azaltılmasında birinci derecede rol aldığını göstermiştir. MS partikülleri ile gerçekleştirilen buz çözme denemelerinde kontrol sistemlerine göre erime zamanında azalmalar görülmüştür. Bu sonuç geleneksel gliserin bazlı buz çözücülere göre önerilen sistemin üstünlüğünü göstermektedir. MS partiküllerinin tekrarlı kullanımlarında erime zamanının kademeleri olarak azalması çalışmanın en önemli sonucudur. Partiküllerin tekrarlı kullanımlarında artan bir performans sağlanması kayda değerdir. Sonuçlar aynı zamanda partiküllerin ekonomik olarak üretilebileceklerini göstermesi açısında da önem taşımaktadır.

Combined Utilization of $KMNO_4$ Modified Starch Particles with Glycerol as De-Icer

An alternative de-icer system consisted of biodegradable starch-modified KMnO4 (MS), and glycerol solution was proposed and testedwith the present study. Experiments were performed with varying KMnO4 (10, 15, 25%) percentages, MS particle (0.06, 0.12, 0.24 g),glycerol (20, 40, 60%) and solution amounts (3, 6, 12 ml). The main idea was to induce a miniscule exothermic reaction betweenglycerol and KMnO4 to enhance the melting of ice via heat release. The experiments were divided into two groups. Initially, the bestconditions to yield the highest temperature increase was statistically determined, and de-icing experiments were conducted based onthe interpretation of these results. Statistical analyses showed that the amount of $KMNO_4$ and MS had merely been responsible formaintaining an effective decrease in melting time. De-icing experiments conducted in the presence of MS particles indicated a decreasein melting time compared to control systems. This result indicated superior performance of the proposed system over traditional glycerolbased de-icers. The higher decrease in melting time was observed in the presence of spent MS particles indicating their repetitive useand economically sound production.

___

  • Bai, X., Dong, Z., Wu, X., Tong, J., Zhou, J. (2013). Changes in the crystalline structure of microspheres of corn starch and amylose under isothermal and temperature cycling treatments. Ind Crop Prod. 51,220.
  • Denby, B.R., Ketzel, M., Ellermann, T., Stojiljkovic, A., Kupiainen, K., Niemi, J.V., Norman, M., Johansson, C., Gustafsson, M., Blomqvist, G., Janhall, S., Sundvor, I. (2016). Road salt emissions: A comparison of measurements and modelling using the NORTRIP road dust emission model. Athmos Environ. 141,508.
  • Durickovic, I., Marchetti, M., Derombise, G., Poisonnier, S., Framot-Terrasse, L., Ludwig, S., Moutton, M. (2012). Spectroscopic appreciation of road deicers in soil and water samples. Procedia Social and Behavioral Sciences. 48, 2482.
  • Equizaa, M.A., Calvo-Polanco, M., Cirelli, D., Senorans, J., Wartenbec, M., Saunders, C., Zwiazeka, J.J. (2017). Long-term impact of road salt (NaCl) on soil and urban trees in Edmonton, Canada. Urban Forestry & Urban Greening. 21, 16.
  • Fu, W., Mathews, A.P. (2005). Two-stage fermentation process for the production of calcium magnesium acetate and propionate road deicers. Enzyme Microb Tech. 36, 953.
  • Ganjal, G., Fang, Q., Hanna, M.A. (2007). Freezing points and small-scale deicing tests for salts of levulinic acid made from grain sorghum. Bioresour Technol. 98, 2814.
  • Hebeish, A., El-Rafie, M.H., El-Sisi, F. Abdel Hafiz, S., Abdel Rahman, A.A. (1999). Oxidation of rice and maize starches using potassium permanganate with various reductants. Polym Degrad Stabil. 43, 363.
  • Hintz, W.D., Relyea, R.A. (2017). Impacts of road deicing salts on the early-life growth and development of a stream salmonid: Salt type matters. Environ Pollut. 223,409-415.
  • Huo, Z., Fang, Y., Yao, G., Zeng, X., Ren, D., Jin, F. (2015). Improved two-step hydrothermal process for acetic acid production from carbohydrate biomass. Journal of Energy Chemistry. 24, 207.
  • Jan, K.N., Panesar, P.S., Rana, J.C., Singh, S. (2017). Structural, thermal and rheological properties of starches isolated from Indian quinoa varieties. Int J Biol Macromol. 102, 315.
  • Jin, F., Zhang, G., Watanabe, Y., Kishita, A., Enomoto, H. (2010). A new process for producing calcium acetate from vegetable wastes for use as an environmentally friendly deicer. Bioresour Technol. 19, 7299.
  • Johnson, E.P. (2012). Aircraft de-icer: Recycling can cut carbon emissions in half. Environ Impact Asses. 32, 156.
  • Jones, D.K., Mattes, B.M., Hintz, W.D., Schuler, M.S., Stoler, A.B., Lind, L.A., Cooper, R.O., Relyea, R.A. (2017). Investigation of road salts and biotic stressors on freshwater wetland communities. Environ Pollut. 221, 159.
  • Mahros, U., Rosseland, B.O., Salbu, B., Teien, H.C. (2017). Single and multiple stressor effect of road deicers and Cu on Atlantic salmon (Salmo salar) alevins from hatching till swim-up. J Environ Sci. 66, 368.
  • Murphy, C., Wallace, S., Knight, R., Cooper, D,. Sellers, T. (2015). Treatment performance of an aerated constructed wetland treating glycol from de-icing operations at UK airport. Ecol Eng. 80, 117.
  • Namazi, H., Dadkhah, A. (2010). Convenient method for preparation of hydrophobically modified starch nanocrystals with using fatty acids. Carbohyd Polym. 79, 731.
  • Oh, S.J., Choi, G.G., Kim, J.S. (2017). Production of acetic acid-rich bio-oils from the fast pyrolysis of biomass and synthesis of calcium magnesium acetate deicer. J Anal Appl Pyrol. 124, 122.
  • Ozgan, E., Serin, S., Gerengi, H., Arslan, İ. (2013). Multi-faceted investigation of the effect of de-icer chemicals on the engineering properties of asphalt concrete. Cold Reg Sci Technol. 87, 59.
  • Poorgholya, N., Massoumi, B., Jaymand, M. (2017). A novel starch-based stimuli-responsive nanosystem for theranostic applications. Int J Biol Macromol.. 97, 654.
  • Sarka, E., Dvoracek, V. (2017). New processing and applications of waxy starch (a review). J Food Eng. 206, 77.
  • Simsek, V., Degirmenci, L., Murtezaoglu, K. (2016). Esterification of Lauric Acid with Glycerol in the Presence of STA/MCM-41 Catalysts. International Journal of Chemical Reactor Engineering. 15(2), 1.
  • Tian, Z., Wang, C., Si, Z., Ma, L., Chen, L., Liu, Q., Zhang, Q., Huang, H. (2017). Fischer-Tropsch synthesis to light olefins over ironbased catalysts supported on KMnO4 modified activated carbon by a facile method. Appl Catal A-Gen. 541, 50.
  • Yang, B.Y., Montgomery, R. (2003). De-Icers Derived From Corn Steep Water. Bioresource Technol. 90, 265.
  • Zhu, F. (2017). Plasma modification of starch. Food Chem. 232, 476.