A Turn OFF Fluorescent Probe For Selective Detection Of $Hg^{2+}$ Ions

Bu çalışmada imidazol içeren yeni bir floresan sensör sentezlenmiş ve sentezlenen sensörün karakterizasyonu ${}^{1}H$NMR, ${}^{13}C$-NMR spektroskopisi, FT-IR spektroskopisi ve elemental analiz cihazı kullanılarak yapılmıştır. Hazırlanan sensör etanol içerisinde civa iyonlarına hem hızlı hem de seçici olarak floresanı söndürerek cevap vermiştir. Sentezlenen 2-((4-(1H-Fenantreimidazol [9,10-d] imidazol-2-)benziliden)amino) fenol (PENIM) and $Hg^{+}$ iyonları arasında kompleksleşme gerçekleştirilmiş ve bu komplesleşme JOB metodu kullanılarak da kompleksleşme oranı teorik olarak hesaplanmıştır. Sentezlenen probun deteksiyon limiti 3σ/k formülü kullanılarak 2.1 nM olarak tespit edilmiştir. Ayrıca, elde edilen civa (II)-PENIM, merkapto molekülü içeren sistein amino asidine karşı tersinir olarak cevap vermiştir. PENIM molekülünün civa iyonlarına karşı cevap vermesinin sonucu olarak floresan şiddetinin artırılması ve söndürülmesi ile ilgili çalışma, yoğun fonksiyonel hesaplama(DFT) yapılarak teorik olarak desteklenmiştir.

A Turn OFF Fluorescent Probe For Selective Detection Of $Hg^{2+}$ Ions

In this study, we prepared a novel fluorescent chemosensor containing an imidazole molecule and the chemosensor characterizedutilizing ${}^{1}H$ NMR, ${}^{13}C$-NMR spectroscopy, FT-IR spectrometer and elemental analyzer. Prepared sensor was utilized as an effectivelyselective and a fastly responsive chemical fluorescent sensor for ‘’turn off’’ determination of mercury (II) ions in EtOH. A clearcomplex between 2-((4-(1H-phenanthro[9,10-d] imidazol-2-yl)benzylidene)amino) phenol (PENIM) and $Hg^{+}$ ions was determinedand calculated employing the Job’s method and also the limit of detection value was found to be 2.1 nM on the basis of 3σ/k.Furthermore, the sensor-$Hg^{2+}$ displayed and reversible property for mercapto containing cysteine molecules. Also, the fluorescenceenhancement and quenching studies were supported by computational experiments based on the density functional theory (DFT)calculations.

___

  • Chen, G., Guo, Z., Zeng, G., & Tang, L. (2015). Fluorescent and colorimetric sensors for environmental mercury detection. Analyst, 140(16), 5400–5443. https://doi.org/10.1039/c5an00389j
  • Chen, J. F., Han, B. B., Ma, J. F., Liu, X., Yang, Q. Y., Lin, Q., Wei, T. B. (2017). Pillar[5]arene-based fluorescent polymer for selective detection and removal of mercury ions. RSC Advances, 7(75), 47709–47714. https://doi.org/10.1039/c7ra10326c
  • Chen, L., Yang, L., Li, H., Gao, Y., Deng, D., Wu, Y., & Ma, L. J. (2011). Tridentate lysine-based fluorescent sensor for Hg(II) in aqueous solution. Inorganic Chemistry, 50(20), 10028–10032. https://doi.org/10.1021/ic200790g
  • Guo, C., & Irudayaraj, J. (2011). Fluorescent Ag clusters via a protein-directed approach as a Hg(II) ion sensor. Analytical Chemistry, 83(8), 2883–2889. https://doi.org/10.1021/ac1032403
  • Han, B., Yuan, J., & Wang, E. (2009). Sensitive and selective sensor for biothiols in the cell based on the recovered fluorescence of the CdTe quantum dots-Hg(II) system. Analytical Chemistry, 81(13), 5569–5573. https://doi.org/10.1021/ac900769h
  • Jiao, Y., Zhang, L., & Zhou, P. (2016). A rhodamine B-based fluorescent sensor toward highly selective mercury (II) ions detection. Talanta, 150, 14–19. https://doi.org/10.1016/j.talanta.2015.11.065
  • Karuk Elmas, Ş. N., & Yilmaz, I. (2018). A Turn off-on Fluorescent Chemosensor for Sequential Determination of Mercury and Biothiols. Journal of Fluorescence, 28(6), 1451–1458. https://doi.org/10.1007/s10895-018-2320-6
  • Li, G., Ma, L., Liu, G., Fan, C., & Pu, S. (2017). A diarylethene-based “on-off-on” fluorescence sensor for the sequential recognition of mercury and cysteine. RSC Advances, 7(33), 20591–20596. https://doi.org/10.1039/c6ra27773j
  • Li, M., Zhou, X., Ding, W., Guo, S., & Wu, N. (2013). Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury(II). Biosensors and Bioelectronics, 41(1), 889–893. https://doi.org/10.1016/j.bios.2012.09.060
  • Li, Q., Wang, C., Tan, H., Tang, G., Gao, J., & Chen, C. H. (2016). A turn on fluorescent sensor based on lanthanide coordination polymer nanoparticles for the detection of mercury(II) in biological fluids. RSC Advances, 6(22), 17811–17817. https://doi.org/10.1039/c5ra26849d
  • Lin W., Long L., Yuan L., Cao Z., Chen B., and Tan W., (2008). A Ratiometric Fluorescent Probe for Cysteine and Homocysteine Displaying a Large Emission Shift, Org. Lett., 10(24), 5577-5580. https://doi.org/10.1021/ol802436j.
  • Taki, M., Akaoka, K., Iyoshi, S., & Yamamoto, Y. (2012). Rosamine-based fluorescent sensor with femtomolar affinity for the reversible detection of a mercury ion. Inorganic Chemistry, 51(24), 13075–13077. https://doi.org/10.1021/ic301822r.