Polimer Değişim Membranlı Yakıt Hücresi Uç Plakası Malzemelerinin Arcan Numunesi Kullanılarak Sonlu Eleman Yöntemi ile Çalışılması

Günümüzde yakıt pilleri, olumlu yönleri nedeniyle elektrik üretmek için daha çok tercih edilmektedir. Çünkü yakıt pilleri, yakıtolarak hidrojen ve oksijeni kullanırsa sadece elektrik, ısı ve su üretir. Yakıt pillerinin bu özelliği, çevre ve kimyasal kirlenmeyiengellemesi nedeniyle önemlidir, bu nedenle çevreye olumlu katkı sağlarlar. Ayrıca hareketli veya dönen parçaların olmaması gibiolumlu yönleri de vardır. Bu nedenle mekanik bakım gerektirmez ve gürültü oluşturmazlar. Ayrıca elektrik üretimi için mobil ve sabitgüç kaynağı olarak çok çeşitli alanlarda kullanılabilirler. Birçok yakıt hücresi türü vardır, ancak proton değişim membranlı yakıthücresi (PEMFC) diğer yakıt hücresi türlerinden daha yaygındır. Bir uç plakası, iki kutuplu akış plakası, gaz difüzyon katmanı,katalizör katmanı ve membran gibi parçalardan oluşur. Uç plakaları, PEMFC'nin dış tarafında bulunur ve hücre yığınlarını bir aradatutar. Uç plakaların tasarımında, farklı yükleme koşullarında kırılma enerjisi durumu dikkate alınmalıdır. Çünkü malzeme, yalnızcamalzeme mukavemeti yaklaşımı ile tasarlanırsa başarısız olabilir. Bu makalede, Arcan numunesi kullanılarak farklı malzemelerinyalın mod I, yalın mod II ve karışık mod kırılma enerjileri ve malzemelerin kırılma davranışları sayısal olarak incelenmiştir.

A Finite Element Method Study of Polymer Exchange MembraneFuel Cell End Plate Materials by Using Arcan Specimen

In the current days, fuel cells are more preferred to generate electricity due to their positive sides. Because, if they use hydrogen andoxygen as fuel, they only produce electricity, heat, and water. This property of fuel cells is significant because it preventsenvironmental and chemical pollution, therefore, they contribute positively to the environment. In addition, they have more positiveaspects such as having no moving or rotating parts. Therefore, they don’t require mechanical maintenance and don’t make noise.Besides, they can be used in a wide range of areas as mobile and stationary power sources for electricity generation. There are manyfuel cell types but proton exchange membrane fuel cell (PEMFC) is more common than the other fuel cell types. It consists of partssuch as an endplate, bipolar flow plate, gas diffusion layer, catalyst layer, and membrane. End plates are located on the outer side ofPEMFC and hold together its stacks. In the design of the endplates, the state of fracture energy should be considered in differentloading conditions. Because the material may fail if it is designed only for the strength of materials concepts. In this paper, pure modeI, pure mode II and mixed mode fracture energy behavior of different materials were investigated numerically by using Arcanspecimen.

___

  • Baroutaji, A., Carton, J. G., Sajjia, M., & Olabi, A. G. (2015). Materials in PEM fuel cells. Van Biert, L., Godjevac, M., Visser, K., & Aravind, P. V. (2016). A review of fuel cell systems for maritime applications. Journal of Power Sources, 327, 345-364.
  • Gencoglu, M. T., & Ural, Z. (2009). Design of a PEM fuel cell system for residential application. International Journal of Hydrogen Energy, 34(12), 5242-5248.
  • Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., & Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied energy, 88(4), 981-1007.
  • Vishnyakov, V. M. (2006). Proton exchange membrane fuel cells. Vacuum, 80(10), 1053-1065.
  • Qin, C., Wang, J., Yang, D., Li, B., & Zhang, C. (2016). Proton exchange membrane fuel cell reversal: a review. Catalysts, 6(12), 197.
  • Elden, G., & Mert, T. A. Ş. (2014). Numerical Investigation of Anisotropic Electrical Conductivity Effects in Proton Exchange Membrane Fuel Cell. Avrupa Bilim ve Teknoloji Dergisi, (Special Issue), 2-6.
  • Haile, S. M. (2003). Fuel cell materials and components. Acta Materialia, 51(19), 5981-6000.
  • Avcu, A . (2020). Fracture energy comparison of aluminum and boron composites for fuel cell end plates. International Journal of Energy Applications and Technologies, 7 (4), 149-153.
  • Wilberforce, T., El Hassan, Z., Ogungbemi, E., Ijaodola, O., Khatib, F. N., Durrant, A., ... & Olabi, A. G. (2019). A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells. Renewable and Sustainable Energy Reviews, 111, 236-260.
  • Moreira, J., Sebastian, P. J., Ocampo, A. L., Castellanos, R. H., Cano, U., & Salazar, M. D. (2002). Dependence of PEM fuel cell performance on the configuration of the gas diffusion electrodes. Journal of New Materials for Electrochemical Systems, 5(3), 173-176.
  • Touhami, S., Mainka, J., Dillet, J., Taleb, S. A. H., & Lottin, O. (2019). Transmission line impedance models considering oxygen transport limitations in polymer electrolyte membrane fuel cells. Journal of the Electrochemical Society, 166(15), F1209.
  • Kim, J. S., Park, J. B., Kim, Y. M., Ahn, S. H., Sun, H. Y., Kim, K. H., & Song, T. W. (2008). Fuel cell end plates: a review. International Journal of Precision Engineering and Manufacturing, 9(1), 39-46.
  • Asghari, S., Shahsamandi, M. H., & Khorasani, M. A. (2010). Design and manufacturing of end plates of a 5 kW PEM fuel cell. International Journal of Hydrogen Energy, 35(17), 9291-9297.
  • Yu, H. N., Kim, S. S., & Do Suh, J. (2010). Composite endplates with pre-curvature for PEMFC (polymer electrolyte membrane fuel cell). Composite Structures, 92(6), 1498- 1503.
  • Shameli, M., & Choupani, N. (2016). Fracture criterion of woven glass-epoxy composite using a new modified mixedmode loading fixture. International Journal of Applied Mechanics, 8(02), 1650015.
  • Choupani, N. (2009). Characterization of fracture in adhesively bonded double-lap joints. International Journal of Adhesion and Adhesives, 29(8), 761-773.
  • Choupani, N, (2008), Experimental and numerical investigation of the mixed-mode delamination in Arcan laminated specimens, Materials Science and Engineering: A, 478, 229- 242.
  • Hossein Abadi, R., Refah Torun, A., Mohammadali Zadeh Fard, A., & Choupani, N. (2020). Fracture characteristics of mixed-mode toughness of dissimilar adherends (cohesive and interfacial fracture). Journal of Adhesion Science and Technology, 34(6), 599-615.
  • Rahmani, A., & Choupani, N. (2019). Experimental and numerical analysis of fracture parameters of adhesively bonded joints at low temperatures. Engineering Fracture Mechanics, 207, 222-236.
  • Kuliiev, R., Orlovskaya, N., Hyer, H., Sohn, Y., Lugovy, M., Ha, D., ... & Blugan, G. (2020). Spark Plasma Sintered B4C— Structural, Thermal, Electrical and Mechanical Properties. Materials, 13(7), 1612.
  • Kasavajhala, A. R. M., & Gu, L. (2011). Fracture analysis of Kevlar-49/epoxy and e-glass/epoxy doublers for reinforcement of cracked aluminum plates. Composite structures, 93(8), 2090-2095.
  • Hsieh, C. L., & Tuan, W. H. (2005). Elastic properties of ceramic–metal particulate composites. Materials Science and Engineering: A, 393(1-2), 133-139.
  • Hassan, S. A., Santulli, C., Yahya, M. Y. B., Gang, C. L., & Abu, B. M. N. (2018). The potential of biomimetics design in the development of impact resistant material. FME Transactions, 46(1), 108-116.
  • Acosta-Flores, M., Jiménez-López, E., Chávez-Castillo, M., Molina-Ocampo, A., Delfín-Vázquez, J. J., & RodríguezRamírez, J. A. (2019). Experimental method for obtaining the elastic properties of components of a laminated composite. Results in Physics, 12, 1500-1505.
  • Schubert, A., Zeidler, H., Jahn, S. F., Flemmig, S., & Schulze, R. (2014). Vibration Analysis of an Ultrasonic-Assisted Joining System. Procedia Engineering, 69, 1021-1028.
  • Avcu, A , Choupani, N , Tüccar, G . (2020). A Numerical Investigation of The Fracture Energy of Materials for Fuel Cell End Plates. European Mechanical Science, 5 (2), 56-63.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç