İnce Film Hidrasyon ve Mikrofluidizasyon Yöntemleri KullanılarakPolifenollerin Yüksek Verimle Nanokapsüllere Yüklenmesi

Bu çalışmada, fenolikçe zengin siyah kuşburnu meyvesi ekstraktı ince film hidrasyon ve mikrofluizidasyon yöntemleri birlikte kullanılarak nano boyuttaki lipozomlara yüksek verimle yüklenmiştir. Hazırlanan nanolipozomların stabilitesinin arttırılması amacıylanegatif elektrik yüklü olan nanolipozomlar elektrostatik depozisyon tekniği ile pozitif yüklü bir biyopolimer olan kitosan ilekaplanmıştır. Bunun için farklı konsantrasyonlarda (%0.1, %0.2, %0.3, %0.4 ve %0.5) çalışılarak optimum kaplama için gereklikitosan konsantrasyonu araştırılmıştır. Bu amaçla, hazırlanan nanolipozom kapsülleri ortalama partikül boyutu ve zeta potansiyeli ölçümleri ile karakterize edilmiştir. Enkapsülasyon veriminin belirlenmesi için toplam fenolik madde içerikleri (TPC) -Folin Ciocalteuyöntemi ve antioksidan kapasiteleri (CUPRAC ve DPPH yöntemleri) analizleri gerçekleştirilmiştir. Çalışmada kullanılan %0.1 kitosankonsantrasyonu hariç (çökme gözlendi) diğer kitosan konsantrasyonlarında (%0.2, %0.3, %0.4 ve %0.5) kaplama başarılı olmuştur.En yüksek enkapsülasyon verimine %0.3 kitosan konsantrasyonu ile kaplanan nanolipozomlarda ulaşılmıştır. Buna göre,enkapsülasyon verimi TPC’ye göre %92, CUPRAC’a göre %87, DPPH’e göre %83 olarak belirlenmiştir. Sonuç olarak, ince filmhidrasyon ve mikrofluizidasyon yöntemlerinin birlikte kullanılmasıyla yüksek enkapsülasyon verimli nanolipozom üretimininmümkün olduğu anlaşılmıştır.

Loading Polyphenols into Nanocapsules with High Encapsulation Efficiency Using Thin Film Hydration and Microfluidization

In this study, phenolic-rich black rosehip fruit extract was loaded into nano-sized liposomes with high efficiency by using thin-filmhydration and microfluidization methods together. In order to increase the stability of the prepared nanoliposomes, negatively chargednanoliposomes were coated with chitosan, a positively charged biopolymer, by electrostatic deposition technique. For this, thechitosan concentration required for optimum coating was investigated by working at different concentrations (0.1%, 0.2%, 0.3%,0.4% and 0.5%). For this purpose, the prepared nanoliposome capsules were characterized by mean particle size and zeta potentialmeasurements. To determine the encapsulation efficiency, total phenolic content (TPC) by Folin Ciocalteu method and antioxidantcapacity (CUPRAC and DPPH methods) analyzes were performed. Coating was successful at other chitosan concentrations (0.2%,0.3%, 0.4% and 0.5%), except for the 0.1% chitosan concentration (aggregation was observed). The highest encapsulation efficiencywas achieved in nanoliposomes coated with 0.3% chitosan concentration. Accordingly, the encapsulation efficiency was determinedas 92%, 87% and 83% in terms of TPC, CUPRAC and DPPH assays, respectively. In conclusion, it has been understood that it ispossible to produce nanoliposomes with high encapsulation efficiency by combining the thin film hydration and microfluidizationmethods together.

___

  • Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., ... & Nejati-Koshki, K. (2013). Liposome: classification, preparation, and applications. Nanoscale Research Letters, 8(1), 1-9.
  • Akgün, D., Gültekin-Özgüven, M., Yücetepe, A., Altin, G., Gibis, M., Weiss, J., & Özçelik, B. (2020). Stirred-type yoghurt incorporated with sour cherry extract in chitosancoated liposomes. Food Hydrocolloids, 101, 105532.
  • Altin, G., Gültekin-Özgüven, M., & Ozcelik, B. (2018). Chitosan coated liposome dispersions loaded with cacao hull waste extract: Effect of spray drying on physico-chemical stability and in vitro bioaccessibility. Journal of Food Engineering, 223, 91-98.
  • Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981.
  • Chun, J.-Y., Choi, M.-J., Min, S.-G., & Weiss, J. (2013). Formation and stability of multiple-layered liposomes by layer-by-layer electrostatic deposition of biopolymers. Food Hydrocolloids, 30(1), 249–257.
  • de Vos, P., Faas, M. M., Spasojevic, M., & Sikkema, J. (2010). Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International dairy journal, 20(4), 292-302.
  • Đorđević, V., Balanč, B., Belščak-Cvitanović, A., Lević, S., Trifković, K., Kalušević, A., ... & Nedović, V. (2015). Trends in encapsulation technologies for delivery of food bioactive compounds. Food Engineering Reviews, 7(4), 452-490.
  • Esposto, B. S., Jauregi, P., Tapia-Blácido, D. R., & Martelli-Tosi, M. (2020). Liposomes vs. chitosomes: Encapsulating food bioactives. Trends in Food Science & Technology, 108, 40- 48.
  • Fang, Z., & Bhandari, B. (2010). Encapsulation of polyphenols– a review. Trends in Food Science & Technology, 21(10), 510-523.
  • Gibis, M., Vogt, E., & Weiss, J. (2012). Encapsulation of polyphenolic grape seed extract in polymer-coated liposomes. Food Funct., 3(3), 246–254.
  • Gültekin-Özgüven, M., Karadağ, A., Duman, Ş., Özkal, B., & Özçelik, B. (2016). Fortification of dark chocolate with spray dried black mulberry (Morus nigra) waste extract encapsulated in chitosan-coated liposomes and bioaccessability studies. Food Chemistry, 201, 205-212.
  • Hao, J., Guo, B., Yu, S., Zhang, W., Zhang, D., Wang, J., & Wang, Y. (2017). Encapsulation of the flavonoid quercetin with chitosan-coated nano-liposomes. LWT-Food Science and Technology, 85, 37-44.
  • Kırtıl, E., & Öztop, M. H. (2014). Enkapsülasyon maddesi olarak lipozom ve gıdalarda kullanımı: Yapısı, karakterizasyonu, üretimi ve stabilitesi. Akademik Gıda, 12(4), 41-57.
  • Laye, C., McClements, D. J., & Weiss, J. (2008). Formation of Biopolymer-Coated Liposomes by Electrostatic Deposition of Chitosan. Journal of Food Science, 73(5), N7–N15.
  • Li, Z., Paulson, A. T., & Gill, T. A. (2015). Encapsulation of bioactive salmon protein hydrolysates with chitosan-coated liposomes. Journal of Functional Foods, 19, 733-743.
  • Özgüven, M., Beyde, B., & Özçelik, B. (2020). Atıkların Değerlendirmesi: Fındık (Corylus avellana L.) ve Antep Fıstığı (Pistacia vera L.) İç Zarlarından Elde Edilen Fenolikçe Zengin Ekstraktlara Lipozomal Taşıma Sistemlerinin Uygulanabilirliği. Avrupa Bilim ve Teknoloji Dergisi, (19), 241-246.
  • Paini, M., Daly, S. R., Aliakbarian, B., Fathi, A., Tehrany, E. A., Perego, P., ... & Valtchev, P. (2015). An efficient liposome based method for antioxidants encapsulation. Colloids and Surfaces B: Biointerfaces, 136, 1067-1072.
  • Taylor, T. M., Weiss, J., Davidson, P. M., & Bruce, B. D. (2005). Liposomal nanocapsules in food science and agriculture. Critical reviews in food science and nutrition, 45(7-8), 587- 605.
  • Trucillo, P., Campardelli, R., Aliakbarian, B., Perego, P., & Reverchon, E. (2018). Supercritical assisted process for the encapsulation of olive pomace extract into liposomes. The Journal of Supercritical Fluids, 135, 152-159.
  • Trucillo, P., Campardelli, R., & Reverchon, E. (2020). Liposomes: From bangham to supercritical fluids. Processes, 8(9), 1022.
  • Yang, J., Ni, B., Liu, J., Zhu, L., & Zhou, W. (2011). Application of liposome-encapsulated hydroxycamptothecin in the prevention of epidural scar formation in New Zealand white rabbits. The Spine Journal, 11(3), 218-223.
  • Zou, L. Q., Liu, W., Liu, W. L., Liang, R. H., Li, T., Liu, C. M., ... & Liu, Z. (2014). Characterization and bioavailability of tea polyphenol nanoliposome prepared by combining an ethanol injection method with dynamic high-pressure microfluidization. Journal of Agricultural and Food Chemistry, 62(4), 934-941.