Bodrum Yarımadası Kent Taşkınlarının Nedenleri ve ÇözümÖnerileri Üzerine Bir Çalışma

Taşkınlar bir alanın gelişimini etkileyen en tehlikeli doğal feleketler arasındadır. Dünya genelinde taşkın olayları en fazla ölüme vemaddi hasara neden olmaktadır. Artan kentleşme ve nüfus doğal çevre üzerinde önemli etkiler yaratmaktadır. Kentsel alanlardakontrolsüz bina inşaatı, yeşil alanların azalması, arazi kullanım değişiklikleri ve kentsel planlama eksikliği gibi insan kaynaklıfaaliyetler taşkınları etkilemektedir. Kentsel taşkın yönetiminde, taşkının büyüklüğünü ve risk alanlarını belirlemek yaşanabilecekzararları azaltmak için son derece önemlidir. Bu çalışmada, Türkiye’nin önemli turizm merkezlerinden biri olan Bodrumyarımadasında yer alan beş dereye ait su toplama havzasının mansabında giderek artan kentleşme, mevcut taşkın ve drenaj tesislerinekensel gelişim amaçlı yapılan müdahaleler ve iklim değişikliğinden kaynaklanan ani taşkın olayları incelenmiştir. Coğrafi BilgiSistemiyle yarımadanın kentsel büyümesinin 1985-2020 yılları arasında %11.36 oranında arttığı belirlenmiştir. Yarımada da Aliyanderesi yıllar içerisinde taşkın oluşturma riskinin en fazla büyüme gösterdiği havza olarak dikkat çekmiştir. Aliyan deresinin ardındanriskli havzalar olarak Çukur, Gökçeler ve Gaz havzaları gelmektedir Çalışma sonucunda, kentleşmedeki artışın taşkın debilerininbüyümesine ve taşkın riski altındaki alanların artmasına neden olduğu belirlenmiştir. Yarımada da inşa edilen taşkın tesislerine yapılanmüdahaleler, arazi kullanımındaki değişiklikler, kentsel büyüme ve çarpık kentleşmenin yarattığı taşkın sorunları belirlenerekoluşabilecek taşkın zararlarını en aza indirmek ya da ortadan kaldırabilmek için beş dere havzasının memba ve mansabında alınmasıgereken önlemler ortaya konulmuştur.

A Study on Solution Suggestions and Causes of Bodrum Peninsula Urban Floods

Floods are among the most dangerous natural disasters affecting the development of an area. Flood events cause the most deaths andmaterial damage in worldwide. Increasing urbanization and population create significant effects on the natural environment. Human induced activities such as uncontrolled building construction in urban areas, reduction of green areas, land use changes and lack ofurban planning affect floods. In urban flood management, determining the magnitude and risk areas of the flood is extremelyimportant in order to reduce the damages which may occur. In this study, increasing urbanization at downstream of the catchment ofthe five streams located in Bodrum peninsula, one of Turkey's most important tourism centers, interventions aimed at development ofthe urban to the current flood and drainage facilities, and sudden floods arising from climate change, are investigated. It wasdetermined that the urban growth of the peninsula increased by 11.36% between 1985-2020 with the Geographical InformationSystem. In the peninsula, Aliyan Stream has attracted attention as the basin where the risk of flooding has grown the most over theyears. After Aliyan stream, Çukur, Gökçeler and Gaz catchments are ranked as risky catchments. In the results of studying, it has beendetermined that the increase in urbanization causes an increase in flood flow rates and an increase in the areas under flood risk. Themeasures to be taken upstream and downstream of the five stream catchments have been suggested to minimize or eliminate flooddamages to be occured by determining the flood problems that interventions to the flood facilities built on the peninsula, changes inland use, urban growth and unplanned urbanization caused.

___

  • Abas, A.A., & Hashim, M. (2014). Change detection of runoffurban growth relationship in urbanised watershed. IOP Conference Series: Earth and Environmental Science, Volume 18, 8th International Symposium of the Digital Earth (ISDE8) 26–29 August 2013, Kuching, Sarawak, Malaysia,1-7 p.
  • Ahmad, T., Pandey, A.C., & Kumar, A. (2019). Evaluating urban growth and its implication on flood hazard and vulnerability in srinagar city, kashmir valley, using geoinformatics. Arab. J. Geosci. 12 (9), 1-20
  • Baba, H. (2018). Comprehensive Risk Management of Urban Flood-Flood Damage Control Law for Specified Urban River Basins.JICA (Japan InternationalCooperation Agency), presentation, 37p.
  • Bayazıt, Y., Koç, C., & Bakış, R. (2021). Urbanization impacts on flash urban floods in Bodrum Province, Turkey. Hydrologıcal Scıences Journal, Vol. 66, No. 1, 118–133
  • Buurman, J., & Babovic, V. (2016). Adaptation pathways and real options analysis: An approach to deep uncertainty in climate change adaptation policies. Policy Soc. 35, 137- 150.
  • Chen, S.Y., Xue, Z.C., Li, M., & Zhu, X.P. (2013). Variable sets method for urban flood vulnerability assessment. Sci. China Technol. 56, 3129–3136.
  • Chikwue, M.I. (2019). Computation of peak Flow discharge using global Mapper 15.0 to design open channel. Conference Book of proceedings. The Dynamics of Environmental Change: Impact of Engineering. Clark, M., & Aide., M. (2011). Virtual Interpretation of Earth Web-Interface Tool (VIEW-IT) for Collecting LandUse/Land-Cover Reference Data. MDPI Remote Sensing, 3(3), 601-620
  • Devi, N.N., Sridharan, B., & Kuiry, S.N. (2019). Impact of urban sprawl on future flooding in chennai city, india. J.Hydrol. 574, 486–496
  • DSI (Devlet Su İşleri). (2019). Bodrum İlçe Merkezi Dereleri. Tarım ve Orman Bakanlığı. Devlet Su İsleri Genel Müdürlüğü. XXI. Bölge Müdürlüğü. Bodrum İlçe Merkezi Dereleri Sunumu, 10 Ocak 2019, Aydın.
  • Gu, D. (2019). Exposure and vulnerability to natural disasters for world’s cities. United Nations: Department of Economic and Social Affairs. Population Division. Technical Paper, December, 125 p.
  • Gündoğdu, K.S., Değirmenci, H. & Demirtaş, Ç. (2002). Creation of GIS Supported Database in Irrıgation Project Management. AGROENVIRON, 26-29 October, Cairo, Egypt. 1-6p.
  • Hallegatte, S., Green, C., Nicholls, R.J., & Corfee-Morlot, J. (2013). Future flood losses in major coastal cities. Nat. Clim. Chang. 3, 802–806.
  • Hansen, R., & Pauleit, S. (2014). From multifunctionality to multiple ecosystem services? A conceptual framework for multifunctionality in green infrastructure planning for urban areas. Ambio. 43, 516–529.
  • Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., & Kanae, S. (2013). Global flood risk under climate change, Nature Climate Change, volume 3, 816–821
  • Jacobson, C.R. (2011). Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review. J. Environ. Manag. 92, 1438–1448.
  • Jha, Abhas K., Robin Bloch, & Jesssica Lamond. (2012). Cities and Flooding: A Guide to Integrated Urban Flood Risk Management for the 21st Century. Washington, DC: World Bank and Global Facility for Disaster Reduction and Recovery.
  • Koç, C., Bakış, R., & Bayazıt, Y. (2017). A study on assessing the domestic water resources, demands and its quality in holiday region of Bodrum Peninsula, Turkey. Tourism Management, Volume 62, 10-19
  • Koç, C., & Bozkurt, H (2013). Büyük Menderes Havzasında Taşkınların Entegre Havza Yönetimiyle Kontrol Edilmesi Üzerine bir Çalışma [A Study on the Control of Floods in Büyük Menderes Basin by Integrated Watershed Management]. 3. Ulusal Taşkın Sempozyumu, 29-30 Nisan 2013, Tebliğler kitabı, 95-102s. Haliç Kongre Merkezi. İstanbul.
  • Koç, C., Kosif, K., Kızıltepe, S., & Özdemir, K (2010). Büyük Menderes ve Batı Akdeniz Havzalarında İşletmede olan Taşkın Tesislerine Yapılan Müdahaleler Üzerine Bir Çalışma [A Study on Intervations on Flood Facilities Operated in Büyük Menderes and West Mediterranean Basins]”. II. Ulusal Taşkın Sempozyumu 22–24 Mart, Afyonkarahisar, 71–79p.
  • Koç, C., Bayazıt, Y., & Bakış, R. (2020). A study on assessing the urban growth, population, and water resources of Bodrum Peninsula, Turkey. Environ Monit Assess. 192:631, 2-12.
  • Kuang, W.H., Chen, L.J., Liu, J.Y., Xiang, W.N., Chi, W.F., Lu, D.S., Yang, T.R., Pan, T., & Liu, A.L. (2016). Remote sensing–based artificial surface cover classification in Asia and spatial pattern analysis. Sci. China Earth Sci. 59, 1720– 1737.
  • Liao, K.H. (2012). A theory on urban resilience to floods-A basis for alternative planning practices. Ecol. Soc.17, 134- 145.
  • Liu, Y.Z., Bralts, V.F., & Engel, B.A. (2015). Evaluating the e ectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runo model. Sci. Total Environ. 511, 298–308.
  • Lockaby, G., Nagy, C., & Vose, J.M., ( 2011). Water and forests. In: Wear, D.N., Greis, J.G. (Eds.), Southern Forest Futures Project, Chapter 13. 85 p.
  • Miller, J.D., & Hutchins, M. (2017). The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. J. Hydrol. Reg. Stud. 12, 345–362.
  • O’Driscoll, M., Clinton, S., & Jefferson, A. (2010). Urbanization effects on watershed hydrology and in-stream processes in the Southern United States. Water 2, 605–648.
  • P. Pettersson, M., Priest, S., & Suykens, C. (2018). Governance Strategies for Improving Flood Resilience in the Face of Climate Change. Water, 10 (11), 1595.
  • Pathirana, A., Denekew, H.B., Veerbeek,W., Zevenbergen, C., & Banda, A.T. (2014). Impact of urban growth-driven landuse change on microclimate and extreme precipitationA sensitivity study. Atmos. Res. 138, 59–72
  • Salimi, E.T., Nohegar, A., Malekian, A., Hoseini, M., & Holisaz, A. (2017). Estimating time of concentration in large watersheds. Paddy and Water Environment. 15 (1):123-13.
  • Sanyal, J., & Lu, X. (2004). Application of remote sensing in flood management with special reference to monsoon asia: A review. Nat. Hazards, 33, 283–301.
  • Satheeshkumar, S., Venkateswaran, S., & Kannan, R. (2017). Rainfall–runoff estimation using SCS–CN and GIS approach in the Pappiredipatti watershed of the Vaniyar sub basin, South India. Model. Earth Syst. Environ. 3(24):1-8.
  • Scholz, M. (2004). Case study: Design, operation, maintenance and water quality management of sustainable storm water ponds for roof runoff l;. Bioresource Technology, 95, 269- 279.
  • Sörensen, J., & Mobini, S. (2017). Pluvial, urban flood mechanisms and characteristics–assessment based on insurance claims. J. Hydrol. 555, 51–67
  • Sudhakar B.S., Anupam, K.S., & Akshay, O.J. (2015). Snyder Unit Hydrograph and GIS for Estimation of Flood for UnGauged Catchments in Lower Tapi Basin, India. Hydrol Current Res 6: 195-206
  • UNISDR. (1998–2017). Economic Losses, Poverty & Disasters. Centre for Research on the Epidemiology of Disasters & UN O_ce for Disaster Risk Reduction: Genebra, Switzerland, 2017.
  • UN (United Nations). (2018) Revision of World Urbanization Prospects. New York, NY, USA, 2018.
  • Wahl, T., Jain, S., Bender, J., Meyers, S.D., & Luther, M.E. (2015). Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nat. Clim. Chang. 5, 1093–1097.
  • Walega, A., Amatyab, D. M., Caldwellc, P., Mariond, D., & Pandae, S. (2020). Assessment of storm direct runoff and peak flow rates using improved SCS-CN models for selected forested watersheds in the Southeastern United States. Journal of Hydrology: Regional Studies, 27 100645. https://doi.org/10.1016/j.ejrh.2019.100645
  • Walsh, C.J., Booth, D.B., Burns, M.J.,& vd. (2016). Principles for urban stormwater management to protect stream ecosystems. Freshw. Sci. 35 (1), 398-411
  • Zhou, Q., Leng, G., Su, J., & Ren, Y (2019). Comparison of urbanization and climate change impacts on urban flood volumes: Importance of urban planning and drainage adaptation. Sci. Total Environ. 25;658:24-33