Aşırı Parlak X-Işın Kaynağı M51 ULX-8’deki Nötron Yıldızının Dönme Periyodu Üzerine

Galaksimizi de içermek üzere yakın galaksilerdeki aşırı parlak X-ışın kaynak (APX) ailesinin bazı üyelerinden geldiği kısa süre öncekeşfedilen periyodik pulsasyonlar madde yığıştıran yoğun cismin doğasını ortaya çıkarmıştır. Pulsasyon gözlensin veya gözlenmesin,günümüzde, önemli sayıda APX’e karadeliklerden daha çok nötron yıldızlarının güç sağladığına inanılmaktadır. Bir APX’in X-ışıntayfındaki siklotron soğurma çizgilerinin saptanması yoğun cismin bir nötron yıldızı olarak tanımlanabilmesi için alternatif bir yolsağlamaktadır. Pulsasyon göstermeyen APX’lerin arasında bulunan M51 ULX-8’in tayfındaki bir siklotron rezonans saçılım yapısının(SRSY) varlığı rapor edilmişti. Bu çalışmada, gözlenen SRSY’nin enerjisinden M51 ULX-8’deki nötron yıldızının yüzeyindekimanyetik alan yeğinliği çıkarsanarak X-ışın salınımındaki hüzmeleme oranı ve daha da önemlisi yakın gelecekteki uzay görevlerisayesinde keşfedilmesi beklenen nötron yıldızının yakalanamamış dönme periyodunun gözlenebilme aralığı kestirilmektedir.

On the Spin Period of the Neutron Star in the Ultraluminous X-RaySource M51 ULX-8

The recent discovery of periodic pulsations from several members of the ultraluminous X-ray source (ULX) family in nearby galaxiesas well as in our own galaxy unveiled the nature of the accreting compact object. Neutron stars rather than black holes are currentlybelieved to power a substantial number of ULXs whether or not pulsations are observed. The detection of cyclotron absorption lines in the X-ray spectrum of a ULX provides an alternative way to identify the compact object as a neutron star. Among the non-pulsatingULXs, the presence of a cyclotron resonance scattering feature (CRSF) in the spectrum of M51 ULX-8 has been reported. In thepresent work, the magnetic field strength on the surface of the neutron star in M51 ULX-8 is inferred from the energy of the observedCRSF to estimate the beaming fraction in X-ray emission and more importantly the observable range for the elusive neutron-star spinperiod to be hopefully discovered by the forthcoming space missions in the near future.

___

  • Bachetti, M., Harrison, F. A., Walton, D. J., Grefenstette, B. W., Chakrabarty, D., Fürst, F., Barret, D., Beloborodov, A., Boggs, S. E., Christensen, F. E., Craig, W. W., Fabian, A. C., Hailey, C. J., Hornschemeier, A., Kaspi, V., Kulkarni, S. R., Maccarone, T., Miller, J. M., Rana, V., Stern, D., Tendulkar, S. P., Tomsick, J., Webb, N. A., & Zhang, W. W. (2014). An ultraluminous X-ray source powered by an accreting neutron star. Nature, 514(7521), 202-204.
  • Becker, P. A., Klochkov, D., Schönherr, G., Nishimura, O., Ferrigno, C., Caballero, I., Kretschmar, P., Wolff, M. T., Wilms, J., & Staubert, R. (2012). Spectral formation in accreting X-ray pulsars: bimodal variation of the cyclotron energy with luminosity. Astronomy & Astrophysics, 544, Article A123.
  • Brightman, M., Harrison, F. A., Fürst, F., Middleton, M. J., Walton, D. J., Stern, D., Fabian, A. C., Heida, M., Barret, D., & Bachetti, M. (2018). Magnetic field strength of a neutronstar-powered ultraluminous X-ray source. Nature Astronomy, 2, 312-316.
  • Carpano, S., Haberl, F., Maitra, C., & Vasilopoulos, G. (2018). Discovery of pulsations from NGC 300 ULX1 and its fast period evolution. Monthly Notices of the Royal Astronomical Society: Letters, 476(1), L45-L49.
  • Çavuş, H., & Hoshoudy, G. A. (2019). A viscous magnetohydrodynamic Kelvin-Helmholtz instability in the interface of two fluid layer: Part II. An application to the atmosphere of the Sun. Astrophysics and Space Science, 364(7), Article 115.
  • Ekşi, K. Y., Andaç, İ. C., Çıkıntoğlu, S., Gençali, A. A., Güngör, C., & Öztekin, F. (2015). The ultraluminous X-ray source NuSTAR J095551+6940.8: a magnetar in a high-mass X-ray binary. Monthly Notices of the Royal Astronomical Society: Letters, 448(1), L40-L42.
  • Erkut, M. H., Duran, Ş., Çatmabacak, Ö., & Çatmabacak, O. (2016). A new correlation with lower kilohertz quasiperiodic oscillation frequency in the ensemble of low-mass X-ray binaries. The Astrophysical Journal, 831(1), Article 25.
  • Erkut, M. H., & Çatmabacak, O. (2017). Parallel tracks as quasisteady states for the magnetic boundary layers in neutronstar low-mass X-ray binaries. The Astrophysical Journal, 849(1), Article 58.
  • Erkut, M. H., Ekşi, K. Y., & Alpar, M. A. (2019). Ultra-luminous X-ray sources as super-critical propellers. The Astrophysical Journal, 873(2), Article 105.
  • Erkut, M. H., Türkoğlu, M. M., Ekşi, K. Y., & Alpar, M. A. (2020). On the magnetic fields, beaming fractions, and fastness parameters of pulsating ultraluminous X-ray sources. The Astrophysical Journal, 899(2), Article 97.
  • Fürst, F., Walton, D. J., Harrison, F. A., Stern, D., Barret, D., Brightman, M., Fabian, A. C., Grefenstette, B., Madsen, K. K., Middleton, M. J., Miller, J. M., Pottschmidt, K., Ptak, A., Rana, V., & Webb, N. (2016). Discovery of coherent pulsations from the ultraluminous X-ray source NGC 7793 P13. The Astrophysical Journal Letters, 831(2), Article L14.
  • Israel, G. L., Belfiore, A., Stella, L., Esposito, P., Casella, P., De Luca, A., Marelli, M., Papitto, A., Perri, M., Puccetti, S., Rodríguez Castillo, G. A., Salvetti, D., Tiengo, A., Zampieri, L., D’Agostino, D., Greiner, J., Haberl, F., Novara, G., Salvaterra, R., Turolla, R., Watson, M., Wilms, J., & Wolter, A. (2017). An accreting pulsar with extreme properties drives an ultraluminous X-ray source in NGC 5907. Science, 355(6327), 817-819.
  • Kaaret, P., Feng, H., & Roberts, T. P. (2017). Ultraluminous Xray sources. Annual Review of Astronomy and Astrophysics, 55(1), 303-341.
  • Middleton, M. J., Brightman, M., Pintore, F., Bachetti, M., Fabian, A. C., Fürst, F., & Walton, D. J. (2019). On the magnetic field in M51 ULX-8. Monthly Notices of the Royal Astronomical Society, 486(1), 2-9.
  • Paczynski, B. (1992). GB 790305 as a very strongly magnetized neutron star. Acta Astronomica, 42, 145-153.
  • Rodríguez Castillo, G. A., Israel, G. L., Belfiore, A., Bernardini, F., Esposito, P., Pintore, F., De Luca, A., Papitto, A., Stella, L., Tiengo, A., Zampieri, L., Bachetti, M., Brightman, M., Casella, P., D’Agostino, D., Dall’Osso, S., Earnshaw, H. P., Fürst, F., Haberl, F., Harrison, F. A., Mapelli, M., Marelli, M., Middleton, M. J., Pinto, C., Roberts, T. P., Salvaterra, R., Turolla, R., Walton, D. J., & Wolter, A. (2020). Discovery of a 2.8 s pulsar in a 2 day orbit high-mass X-ray binary powering the ultraluminous X-ray source ULX-7 in M51. The Astrophysical Journal, 895(1), Article 60.
  • Sathyaprakash, R., Roberts, T. P., Walton, D. J., Fuerst, F., Bachetti, M., Pinto, C., Alston, W. N., Earnshaw, H. P., Fabian, A. C., Middleton, M. J., & Soria, R. (2019). The discovery of weak coherent pulsations in the ultraluminous X-ray source NGC 1313 X-2. Monthly Notices of the Royal Astronomical Society: Letters, 488(1), L35-L40.
  • Shakura, N. I., & Sunyaev, R. A. (1973). Black holes in binary systems. Observational appearance. Astronomy & Astrophysics, 24, 337-355.
  • Staubert, R., Trümper, J., Kendziorra, E., Klochkov, D., Postnov, K., Kretschmar, P., Pottschmidt, K., Haberl, F., Rothschild, R. E., Santangelo, A., Wilms, J., Kreykenbohm, I., & Fürst, F. (2019). Cyclotron lines in highly magnetized neutron stars. Astronomy & Astrophysics, 622, Article A61.
  • Türkoğlu, M. M., Özsükan, G., Erkut, M. H., & Ekşi, K. Y. (2017). Constraints on the disc-magnetosphere interaction in accreting pulsar 4U 1626-67. Monthly Notices of the Royal Astronomical Society, 471(1), 422-430.
  • Wilson-Hodge, C. A., Malacaria, C., Jenke, P. A., Jaisawal, G. K., Kerr, M., Wolff, M. T., Arzoumanian, Z., Chakrabarty, D., Doty, J. P., Gendreau, K. C., Guillot, S., Ho, W. C. G., LaMarr, B., Markwardt, C. B., Özel, F., Prigozhin, G. Y., Ray, P. S., Ramos-Lerate, M., Remillard, R. A., Strohmayer, T. E., Vezie, M. L., Wood, K. S., & NICER Science Team (2018). NICER and Fermi GBM observations of the first galactic ultraluminous X-ray pulsar Swift J0243.6+6124. The Astrophysical Journal, 863(1), Article 9.