Metamalzeme Tabanlı İki Bantlı Mükemmel Soğurucu

Son zamanlarda mükemmel soğurucular (MS), karmaşık elektriksel ve manyetik geçirgenlik özelliklerinden dolayı büyük ilgigörmüştür. Malzemenin ve geometrinin doğru oranlarda seçilmesiyle MS’ nin empedansı boş uzaya eşleştirilebilir; böylece genişelektromanyetik spektrumda güçlü soğurum elde edilebilir. Özellikle metal-dielektrik bazlı plazmonik metamalzemelerden oluşannanoyapılar, güçlü yakın alan geliştirme, negatif kırılma indeksi ve optik gizleme gibi benzersiz optik özellikler sergiler. Buçalışmada, metamalzeme tabanlı farklı rezonanslarda aynı anda %100’ e yakın bir soğurumla çalışan iki bantlı U şeklinde antenlerdenoluşan bir MS platformu önerilmiştir. MS platformunun ince ayar mekanizması için sonlu fark zaman alanı (FDTD) simülasyonlarıaracılığıyla spektral yanıtının geometrik parametrelere bağımlılığı sayısal olarak analiz edilmiştir. Soğurum tepkisini ve yakın alandağılımlarının fiziksel temelleride sayısal olarak incelenmiştir. Sayısal hesaplamalarımız, ikili rezonanslarda U plazmonik antensisteminin geniş ve kolayca erişilebilen yerel elektromanyetik alanları desteklediğini göstermektedir. Deneysel sonuçlar, teorikhesaplamalar ile oldukça uyumlu olduğu gösterilmiştir. Çift rezonanslı U şekilli antenler sahip oldukları güçlü ve erişilebilirelektromanyetik alandan dolayı güçlü yakın alan özelliklerine sahiptir ve çok sayıda spektral özellik gerektiren birçok uygulama içinoldukça avantajlı olabilir. Ayrıca, önerilen U şekilli plazmonik antenlerin rezonans frekansı spektral olarak ayarlanabildiği için aktiffiltreler, optik modülatörler, ultra hızlı anahtarlama cihazları, haberleşme, detektör ve biyoalgılama gibi çok çeşitli uygulamalar içinde kullanılabilir.

Dual Band Perfect Absorber Based on Metamaterials

Recently, perfect absorbers (PAs) have attracted great attention due to their complex electrical permittivity and magnetic permeabilityproperties. By choosing the right ratio of the material and geometry the impedance of the perfect absorber can be matched to to thefree space; therefore, strong absorption in a wide range of electromagnetic spectrum. Especially, metal-dielectric based plasmonicmetamaterials in nanometer scale exhibit unique optical properties such as strong near field enhancement, negative refractive indexand optical cloaking. In this study, we propose a dual-band metamaterial base PA platform consisting of U-shaped antennas with unityabsorption. The finite difference time domain (FDTD) method was used to numerically analyze the spectral response dependence ongeometric parameters to fine tune the mechanism of the PA platform. The physical basis of the absorption response and near-fielddistributions of these nanoscale antennas were also studied numerically. Our numerical calculations show that U-shaped plasmonicantenna system supports large and easily accessible local electromagnetic fields. Experimental and theoretical results are found to bein good aggrement. U-shaped antennas with dual resonances with strong electromagnetic fields can be highly advantageous for a widevariety of applications that require a large number of spectral features with strong near field properties. In addition, since theresonance frequency of the proposed U-shaped plasmonic antennas can be adjusted spectrally, they can also be used for a wide varietyof applications such as active filters, optical modulators, ultra-fast switching devices, communication, detectors and biosensing.

___

  • A. Degiron, H. N. (2004). Optical transmission properties of a single subwavelength aperture in a real metal. Optics Communications , 61-66.
  • Ahmet Ali Yanik, X. W. (2008). Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays. Appl. Phys. Lett. , 93, 081104.
  • Alexander Belushkin, F. Y. (2018). Nanoparticle-Enhanced Plasmonic Biosensor for Digital Biomarker Detection in a Microarray. ACS Nano , 12 (5), 4453–4461.
  • Arif E. Cetin, S. K. (2016). Quantification of Multiple Molecular Fingerprints by Dual-Resonant Perfect Absorber. Adv. Optical Mater. , 4, 1274–1280.
  • Biagioni, T. T. (2019). Semiconductor infrared plasmonics. Nanophotonics , 8 (6), 949–990.
  • Bowen Li, S. Z. (2017). Single-Nanoparticle Plasmonic Electrooptic Modulator Based on MoS2 Monolayers. ACS Nano , 11 (10), 9720–9727.
  • C. M. Soukoulis, S. L. (2007). “Physics. Negative refractive index at optical wavelengths,. Science , 315 (5808), 47-49.
  • Cameron Gilroy, S. H. (2019). Roles of Superchirality and Interference in Chiral Plasmonic Biodetection. J. Phys. Chem. C , 123 (24), 15195–15203.
  • Deepak Sood, C. C. (2017). A polarization insensitive compact ultrathin wide-angle penta-band metamaterial absorber. Journal of Electromagnetic Waves and Applications , 31 (4), 394-404.
  • Grisha Spektor, A. D. (2015). Metafocusing by a Metaspiral Plasmonic Lens. Nano Lett. , 15 (9), 5739–5743.
  • Khwanchai Tantiwanichapan, X. W. (2017). Graphene terahertz plasmons: A combined transmission spectroscopy and Raman microscopy study. ACS Photonics , 4 (8), 2011-2017.
  • Luc Duempelmann, A. L.-D. (2016). Four-Fold Color Filter Based on Plasmonic Phase Retarder. ACS Photonics , 3 (2), 190–196.
  • N. I. Landy, S. S. (2008). Perfect metamaterial absorber. Phys. Rev. Lett. , 100, 207402.
  • Palik, E. D. (1985). Handbook of Optical Constants of Solids. Orlando, FL: Academic.
  • Rana Sadaf Anwar, H. N. (2018). Recent advancements in surface plasmon polaritons-plasmonics in subwavelength structures in microwave and terahertz regimes. Digital Communications and Networks , 4 (4), 244-257.
  • Seon-Young Rhim, G. L.-K. (2020). Using Active Surface Plasmons in a Multibit Optical Storage Device to Emulate Long‐Term Synaptic Plasticity. Physica status solidi , 217 (20), 2000354.
  • Ting Xie, Z. C. (2017). A wide-angle and polarization insensitive infrared broad band metamaterial absorber. Optics Communications , 383, 81-86.
  • Tsai, M.-W. &.-H.-Y.-c.-2. (2006). Bragg scattering of surface plasmon polaritons on extraordinary transmission through silver periodic perforated hole arrays. Applied Physics Letters. , 88, 213112.
  • Wang Xin, Z. B. (2017). Design, Fabrication, and Characterization of a Flexible Dual-Band Metamaterial Absorber. IEEE Photonics Journal , 9 (4), 1-12.
  • Yakov Galutin, E. F. (2017). Invisibility Cloaking Scheme by Evanescent Fields Distortion on Composite Plasmonic Waveguides with Si Nano-Spacer. Scientific Reports , 12076.
  • Yasa Ekşioğlu, A. E. (2018). Multi-band plasmonic platform utilizing UT-shaped graphene antenna arrays. Plasmonics , 13 (3), 1081-1088.
  • Zhi Hao Jiang, S. Y. (2011). Conformal Dual-Band NearPerfectly Absorbing Mid-Infrared Metamaterial Coating. ACS Nano , 5 (6), 4641–4647.