Yerli Elektrikli Aracın Elektrik Sarfiyatını Güneş ve Rüzgâr Enerjisiile Karşılama Potansiyeli

Son yılarda elektrikli araçların dünya genelinde artması paralelinde enerji ihtiyacı da artmıştır. Türkiye bu alana TOGG yerli elektrikliaraç (EA) ile hızlı ve başarılı bir giriş yapmayı planlamaktadır. Fakat EA’lerin sayısının artması ile ülkemizin de enerji ihtiyacı artacaktır.Bu araştırmada yerli EA’lerin özelliklerine bağlı olarak araç sayılarına göre günlük ilave elektrik sarfiyatı hesaplanmıştır. Türkiyededünyadaki gelişmelere bağlı olarak 20 yılın içinde 1 milyon adete ulaşması öngörülmektedir. Bu çalışmadaki yapılan araştırmada 1, 100bin ve 1 milyon aracın günlük elektrik sarfiyatı hesaplanmıştır. Bu ilave enerji tüketimini güneş enerji ve rüzgâr enerjisi ilekarşılanabilme potansiyeli araştırılmıştır. Sonuç olarak ilave elektrik sarfiyatının tamamını potansiyel güneş enerjisi ile karşılamak içinyaklaşık 1000 kW gücünde 5 milyon adet güneş paneline ve potansiyel rüzgâr enerjisi ile karşılamak için 2.159 MW gücünde yaklaşık1390 adet rüzgâr türbinine ihtiyaç olduğu bulunmuştur.

The Potential of Providing of Electricity Consumption of The Domestic Electric Vehicle with Solar and Wind Energy

In recent years, the increase in the need for energy has increased in parallel with the increase of electric vehicles worldwide. Turkey hasmade a fast and successful entry into this field with the TOGG domestic electric vehicle (EA). However, with the increase in the numberof EVs, the need for energy in our country will increase. In this research, daily additional electricity consumption was calculatedaccording to the number of vehicles, depending on the characteristics of the TOGG Evs. In Turkey, depending on the developments inthe world, it is seen that it will reach 1 million pieces within 20 years. In the research, daily electricity consumption of 1 vehicle, 100thousand and 1 million vehicles was calculated. The potential for meeting this additional energy consumption with solar energy andwind energy was investigated. As a result, it was found that 5 million solar panels with approximately 1000 kW power were needed tomeet all of the additional electricity consumption with potential solar energy and approximately 1390 wind turbines with 2,159 MWpower were needed to meet with potential wind energy.

___

  • Adler, K. (2021). IHS Markit forecasts global EV sales to rise by 70% in 2021 . Retrieved March 10, 2021, from https://ihsmarkit.com/research-analysis/ihs-markit-forecastsglobal-ev-sales-to-rise-by-70-percent.html
  • Agency EA. (2019). 2019 Experiential Marketing Trend Report. Retrieved from https://agencyea.com/insights/2019- experiential-marketing-trend-report/
  • Alkan, S., Öztürk, A., Zavrak, S., Tosun, S., & Avcı, E. (2014). Bir Evin Elektrik Enerjisi İhtiyacını Karşılayacak Fotovoltaik Sistemin Kurulumu. In Elektronik – Bilgisayar ve Biyomedikal Mühendisliği Sempozyumu, 27 – 29 Kasım (pp. 78–82). Bursa. Retrieved from https://www.emo.org.tr/ekler/12f562f9f252bd3_ek.pdf
  • Allen, M., Babiker, M., Chen, Y., Taylor, M., Tschakert Australia, P., Waisman, H., … Waterfield, T. (2018). Summary for Policymakers — Global Warming of 1.5 oC. Aromar Revi. Retrieved from https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR1 5_SPM_version_report_LR.pdf
  • Atakul, Ş., Kalender, M. A., Gezici, M., & Konuralp Eliçin, A. (2015). Güneş Tarlası Kurulumu. Tarım Makinaları Bilim Dergisi (Journal of Agricultural Machinery Science), 2015(1), 55–60. Retrieved from https://dergipark.org.tr/tr/download/article-file/445009
  • Atlası, E. (2019). Türkiye Elektrik Tüketimi. Retrieved March 11, 2021, from https://www.enerjiatlasi.com/elektrik-tuketimi/ Bae, C., & Kim, J. (2017). Alternative fuels for internal combustion engines. Proceedings of the Combustion Institute, 36(3), 3389–3413. https://doi.org/10.1016/j.proci.2016.09.009
  • Bayrak, Y. (2020). Türkiye’nin Enerji Görünümü , Yakın Dönem (2020-2025) Elektrik Üretim-Tüketim Projeksiyonuna Yönelik Bir Çözümleme. Retrieved from https://www.mmo.org.tr/sites/default/files/TEG-2020- 4.2_Yakın Dönem Projeksiyonu_Yusuf Bayrak.pdf
  • Behrentz, E., Ling, R., Rieger, P., & Winer, A. M. (2004). Measurements of nitrous oxide emissions from light-duty motor vehicles: A pilot study. Atmospheric Environment, 38(26), 4291–4303. https://doi.org/10.1016/j.atmosenv.2004.04.027
  • BMW. (2021). Elektrikli otomobil türleri. Retrieved March 10, 2021, from https://www.bmw.com.tr/tr/topics/fascinationbmw/bmw-i-ve-e-mobilite/elektrikli-otomobil-turleri.html
  • Brijesh, P., & Sreedhara, S. (2013). Exhaust emissions and its control methods in compression ignition engines: A review. International Journal of Automotive Technology, 14(2), 195– 206. https://doi.org/10.1007/s12239-013-0022-2
  • Çelikdemir, S., & Özdemir, M. T. (2020). Adilcevaz Bölgesinde Rüzgâr Enerji Potansiyelinin İncelenmesi. BEÜ Fen Bilimleri Dergisi , 9(1), 204–214.
  • Cellek, M. S. (2020). Kaya Gazlarının Yanma Karakteristikleri ve İs oluşumu. European Journal of Science and Technology, (22), 49–59. https://doi.org/10.31590/ejosat.839848
  • Çiçek, A., & Erdinç, O. (2019). PV-Batarya Hibrit Sistemi İçeren Elektrikli Araç Otoparkının Şarj Yönetimi. European Journal of Science and Technology, (15), 466–474. https://doi.org/10.31590/ejosat.527350
  • Civles, M., & İrem, Z. (2018). Elektrikli araçlar. Retrieved from https://www.dunyaenerji.org.tr/wpcontent/uploads/2018/09/YET3-1.pdf
  • Çobanoğlu, A., Demirkıran, G., & Güneş, M. (2021). İzmir İlinde Elektrikli Kara Araçları için Güneş Enerjisi Destekli Bir Şarj İstasyonunun Tasarlanması. European Journal of Science and Technology, (21), 635–648. https://doi.org/10.31590/ejosat.777874
  • De Cauwer, C., Van Mierlo, J., & Coosemans, T. (2015). Energy consumption prediction for electric vehicles based on realworld data. Energies, 8(8), 8573–8593. https://doi.org/10.3390/en8088573
  • Deloitte. (2019). New market. New entrants. New challenges. Battery Electric Vehicles.
  • Doğanay, H., Özdemir, Ü., & Şahin, F. İ. (2020). Genel Beşerî Ve Ekonomik Coğrafya (11th ed.). Pegem Akademi. https://doi.org/10.14527/9786053641193
  • EEA. (2019). Trends and projections in Europe 2019 - Tracking progress towards Europes climate and energy targets. https://doi.org/10.2800/51114
  • Ekolojist, net. (2018). Rüzgar Enerjisi Güç Hesabı . Retrieved March 11, 2021, from https://ekolojist.net/ruzgar-enerjisiguc-hesabi
  • Elibüyük, U., Yakut, A. K., & Üçgül B A, İ. (2016). Süleyman Demirel Üniversitesi Rüzgâr Enerjisi Santrali Projesi. Süleyman Demirel Üniversitesi Yekarum E-Dergi, 3(2), 22– 32.
  • Enerji Atlası. (2021). Türkiye Güneş Enerjisi Potansiyeli Haritası. Retrieved March 11, 2021, from https://www.enerjiatlasi.com/gunes-enerjisi-haritasi/turkiye
  • Eriksson, E. L. V., & Gray, E. M. A. (2017). Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems – A critical review. Applied Energy, 202, 348– 364. https://doi.org/10.1016/j.apenergy.2017.03.132
  • ETKB. (2020). Güneş. Retrieved March 10, 2021, from https://enerji.gov.tr/bilgi-merkezi-enerji-gunes
  • GEP. (2021). Güneş Paneli Fiyatları. Retrieved March 11, 2021, from http://gunesenerjisipanelleri.net/gunes-paneli-fiyatlari/
  • GEPA. (n.d.). Türkiye PV tipi alan-Üretilebilecek enerji (kWh/yıl). Retrieved March 15, 2021, from https://gepa.enerji.gov.tr/MyCalculator/
  • Gezegen, S. (2021). Rüzgar Türbini Enerji Hesabı – Enerjim Güneşten. Retrieved March 11, 2021, from https://www.enerjimgunesten.com/ruzgar-turbini-enerjihesabi.html
  • Ghosh, A. (2020). Possibilities and Challenges for the Inclusion of the Electric Vehicle (EV) to Reduce the Carbon Footprint in the Transport Sector: A Review. Energies, 13(10), 2602. https://doi.org/10.3390/en13102602
  • Gürbüz, H. (2020). Analysis of the effects of multiple injection strategies with hydrogen on engine performance and emissions in diesel engine. International Journal of Hydrogen Energy, 45(51), 27969–27978. https://doi.org/10.1016/j.ijhydene.2020.07.012
  • Gürbüz, H., & Sandalcı, T. (2019). Investigation of Effects of Fumigation on Performance and Emission in Dual Fuel Engines Injection-Controlled With Electronic Card. International Journal of Engineering Research and Advanced Technology, 5(3), 24–31. https://doi.org/10.31695/ijerat.2019.3400
  • Hacıbebekoğlu, A., Maden, Ö. ;, & Demirliçakmak, E. (2013). Güneş Panelleri İmalatı Yatırım Fizibilitesi. Retrieved from https://www.oran.org.tr/materyaller/Editor/document/Planla maBirimi/Dokmerkezi/Fizibilite_Raporlari/Güneş Panelleri İmalatı Yatırım Fizibilitesi.pdf
  • Hakyemez, C. (2021). Aylık Enerji Bülteni Ocak 2021. Retrieved from https://www.tskb.com.tr/i/assets/document/pdf/enerjibulteni-ocak-2021.pdf
  • Huang, Y., Surawski, N. C., Organ, B., Zhou, J. L., Tang, O. H. H., & Chan, E. F. C. (2019). Fuel consumption and emissions performance under real driving: Comparison between hybrid and conventional vehicles. Science of the Total Environment, 659, 275–282. https://doi.org/10.1016/j.scitotenv.2018.12.349
  • Hyodo, T., Watanabe, D., & Wu, M. (2013). Estimation of energy consumption equation for Electric Vehicle and its implementation of driving behaviour . Tokyo. Retrieved from http://www.wctrs-society.com/wpcontent/uploads/abstracts/rio/selected/1356.pdf
  • IEA. (2019). Global EV Outlook 2019. Retrieved from https://www.iea.org/reports/global-ev-outlook-2019
  • Karık, F., Sözen, A., & İskender, Ü. (2015). Türkiye’de Rüzgar Enerjisinde Mevcut Durum. Gazi Mühendislik Bilimleri Dergisi, 1(2), 219–234. Retrieved from https://dergipark.org.tr/tr/download/article-file/302956
  • Keskin, A., & Emiroğlu, O. A. (2016). Catalytic Reduction Techniques For Post-Combustion Diesel Exhaust Emissions. Fuels And Combustion in Engineering Journal, (1), 16–21. Retrieved from https://dergipark.org.tr/tr/pub/fce/313115
  • Kızıltuğ, M. (2002). Wind Energy. Istanbul Technical University.
  • Köroğlu, T., Teke, A., Bayındır, K. Ç., & Tümay, M. (2010). Güneş Paneli Sistemlerinin Tasarımı. Elektrik Mühendisliği Dergisi, (439), 98–104. Retrieved from https://www.emo.org.tr/ekler/8e692a34a5e564e_ek.pdf?derg i=610
  • López, I., Ibarra, E., Matallana, A., Andreu, J., & Kortabarria, I. (2019). Next generation electric drives for HEV/EV propulsion systems: Technology, trends and challenges. Renewable and Sustainable Energy Reviews, 114, 109336. https://doi.org/10.1016/j.rser.2019.109336
  • Luo, Y. (2010). Wind Turbine Site Selection Over Abandoned Mined Land. In NAAMLP 32nd Annual Conference, Sept. 19- 22, 2010, Scranton, PA (pp. 2–16).
  • Manoharan, Y., Hosseini, S. E., Butler, B., Alzhahrani, H., Senior, B. T. F., Ashuri, T., & Krohn, J. (2019). Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect. Applied Sciences, 9(11), 2296. https://doi.org/10.3390/app9112296
  • Martínez-Lao, J., Montoya, F. G., Montoya, M. G., & ManzanoAgugliaro, F. (2017). Electric vehicles in Spain: An overview of charging systems. Renewable and Sustainable Energy Reviews, 77, 970–983. https://doi.org/10.1016/j.rser.2016.11.239
  • Martins, J., & Brito, F. P. (2020). Alternative fuels for internal combustion engines. Energies, 13(15), 2–33. https://doi.org/10.3390/en13164086
  • Masters, G. M. (2013). Renewable and Efficient Electric Power Systems, (2nd Edition). Wiley-IEEE Press. Retrieved from https://www.wiley.com/enus/Renewable+and+Efficient+Electric+Power+Systems%2C +2nd+Edition-p-9781118633502
  • MGM, M. G. M. (2021). Türkiye Rüzgar Atlası. Retrieved March 11, 2021, from https://mgm.gov.tr/genel/ruzgar-atlasi.aspx Mruzek, M., Gajdáč, I., Kučera, Ľ., & Barta, D. (2016). Analysis of Parameters Influencing Electric Vehicle Range. Procedia Engineering, 134, 165–174. https://doi.org/10.1016/j.proeng.2016.01.056
  • Oral, M. (2020). Türkiye’nin Güneş Enerjisi Potansiyeli ve PV Uygulamalarının Yerel Ölçekte Değerlendirilmesi: Karabük İli Örneği. Lnternational Journal of Geography and Geography Education, 42(42), 482–503. https://doi.org/10.32003/igge.743513
  • Özdoğan, F. S., & Bitlisli, F. (2019). Güneş Enerjisi ile Elektrik Üreten İşletmelerin Muhasebe Uygulamalarının TDHP ve TMS/TFRS Çerçevesinde Karşılaştırılması . Balıkesir University The Journal of Social Sciences Institute, 22(42), 255–279. https://doi.org/10.31795/baunsobed.657853
  • Özgür, E. (2020). Türkiye’nin Enerji Görünümü. Retrieved from https://www.mmo.org.tr/sites/default/files/TEG-2020- 12_Türkiye%27de Güneş Enerjisi_Evren Özgür.pdf
  • Ozsezen, A. N., & Canakci, M. (2011). Performance and combustion characteristics of alcohol–gasoline blends at wide-open throttle. Energy, 36(5), 2747–2752. https://doi.org/10.1016/J.ENERGY.2011.02.014
  • Pedrozo, V. B., May, I., Dalla Nora, M., Cairns, A., & Zhao, H. (2016). Experimental analysis of ethanol dual-fuel combustion in a heavy-duty diesel engine: An optimisation at low load. Applied Energy, 165, 166–182. https://doi.org/10.1016/j.apenergy.2015.12.052
  • Rezaei, A., Burl, J. B., Solouk, A., Zhou, B., Rezaei, M., & Shahbakhti, M. (2017). Catch energy saving opportunity (CESO), an instantaneous optimal energy management strategy for series hybrid electric vehicles. Applied Energy, 208, 655–665. https://doi.org/10.1016/j.apenergy.2017.09.089
  • Sarıkaya, S. (2012). Güneş Enerjisi Sektör Raporu. Retrieved from https://www.kalkinmakutuphanesi.gov.tr/assets/upload/dosy alar/g-c3-bcne-c5-9f-20enerjisi-20sekt-c3-b6rel-20analiz20raporu.pdf
  • Saygın, D., Bülent, O., Teimourzadeh, S., Hildermeier, J., Koç, M., & Kolokathis, C. (2019). Türkiye ulaştırma sektörünün dönüşümü: Elektrikli araçların Türkiye dağıtım şebekesine etkileri. Retrieved from https://www.shura.org.tr/wpcontent/uploads/2019/12/Turkiye-ulastirma-sektorunundonusumu-Elektrikli-aracların-Turkiye-dagitim-sebekesineetkileri-.pdf
  • Sayın, A. A., & Yüksel, İ. (2011). Elektrikli Renault Fluence Aracı,Lityum İyon Bataryasının Modellenmesi ve Batarya Yönetimi. Mühendis ve Makina, 52(615), 75–82. Retrieved from http://www1.mmo.org.tr/resimler/dosya_ekler/49c18c0be0e 96e2_ek.pdf?dergi=1129
  • Sun, C., Sun, F., & He, H. (2017). Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles. Applied Energy, 185, 1644–1653. https://doi.org/10.1016/j.apenergy.2016.02.026
  • Sun, Z., Wen, Z., Zhao, X., Yang, Y., & Li, S. (2020). Real-World Driving Cycles Adaptability of Electric Vehicles. World Electric Vehicle Journal, 11(1), 19. https://doi.org/10.3390/wevj11010019
  • TEİAŞ. (2021). 2020 yılı elektrik-uretim-tuketim-raporu. Retrieved March 10, 2021, from https://www.teias.gov.tr/trTR/aylik-elektrik-uretim-tuketim-raporlari
  • Teter, J., Tattini, J., & Petropoulos, A. (2020). Tracking Transport 2020 – Analysis - IEA. Retrieved from https://www.iea.org/reports/tracking-transport2020?utm_content=buffer5a8e1&utm_medium=social&utm _source=twitter.com&utm_campaign=buffer#
  • TOGG. (2020). TOGG. Retrieved March 30, 2020, from https://www.togg.com.tr/content/otomobil
  • Traub, L. W. (2011). Range and endurance estimates for batterypowered aircraft. Journal of Aircraft, 48(2), 703–707. https://doi.org/10.2514/1.C031027
  • TUİK. (2020). Motorlu Kara Taşıtları, Aralık 2020. Retrieved March 10, 2021, from https://data.tuik.gov.tr/Bulten/Index?p=Road-MotorVehicles-December-2020-37410
  • Türeb, T. R. E. B. (2021). Türkiye Rüzgar Enerjisi İstatistik Raporu 2020. Retrieved from https://tureb.com.tr//anasayfa
  • Wang, J., Besselink, I., & Nijmeijer, H. (2015). Electric vehicle energy consumption modelling and prediction based on road information. World Electric Vehicle Journal, 7(3), 447–458. https://doi.org/10.3390/wevj7030447
  • Williams, M., & Minjares, R. (2016). A technical summary of Euro 6/VI vehicle emission standards. Retrieved from https://theicct.org/sites/default/files/publications/ICCT_Euro 6-VI_briefing_june2016.pdf
  • Yıldız, S. S. (2021). Balıkesir İli Rüzgâr Hızı Haritalarının Hazırlanması ve Rüzgâr Enerjisi Potansiyeli Açısından İncelenmesi. Geomatik, 6(3), 198–206. https://doi.org/10.29128/geomatik.737567
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç