Yapı Sistemlerinde Patlama Etkilerinin ve Patlama GüvenliğininAraştırılması

Terör faaliyetleri sonucu meydana gelen patlamalar binalara büyük zararlar vermekte ve birçok can kaybına neden olmaktadır. Bombayüklü araçlarla yapılacak saldırılarda bu araçlar, hedeflenen yapıya erişim kolaylığı sağlarken, araç kapasitelerine göre çeşitlimiktarlarda patlayıcı getirme olanağına sahiptir. Literatürde yapıların patlama güvenliğine yönelik çalışmalarda, eleman bazında ya dayapısal olarak birtakım analiz yöntemleri kullanılmaktadır. Patlama yükü etkisi altında tek bir yapı elemanının performansınınbelirlenmesi, yapısal bir sistemde çökme analizlerinin yapılması, yapıya dinamik patlama yüklerinin etki ettirilmesi bunlardanbazılarıdır. Bu çalışma kapsamında öncelikle sonlu eleman yöntemine dayalı analiz yapan SAP2000 yazılımı kullanılarak farklımesafelerden uygulanan patlama yükleri için yapının analizleri gerçekleştirilmiş ve patlayıcıya en yakın konumda bulunan kolonundinamik davranışı incelenmiştir. Ayrıca eleman bazlı ve tek serbestlik dereceli sisteme dayalı analiz yapan RC-Blast yazılımında mevcutkolonun modellenmesi yapılarak kolon kapasiteleri belirlenmiştir. Yapıların patlama güvenliğine yönelik sismik taban yalıtımıuygulaması önerilmiş ve yalıtımlı ve yalıtımsız yapı durumları için kritik noktadaki kolonda meydana gelen etki/kapasite oranlarıkarşılaştırılmıştır. Sismik izolatörlü yapıların patlama etkilerini daha iyi sönümlediği sonucuna varılmıştır. Çalışma sonucunda RC-Blastve SAP2000 yazılımlarında yapılan çözümlemelerde yapı davranışları ancak başlangıç seviyesinde benzerlik göstermektedir. Patlamaetkilerini azaltmak amacıyla yapı çevresine korunaklı duvar inşa edilmesi önerilmiştir. Yapıların patlama etkileri altında davranışı kesinolarak bilinmemekle birlikte çözüm yöntemlerinin farklılaştırılması belirli yaklaşımları beraberinde getirebilmektedir. Patlamaanalizlerinde eleman bazlı ve sistem bazlı yöntemlerin bir arada kullanımının daha verimli sonuçlar vereceği sonucuna varılmıştır.

Investigation of Explosion Effects and Explosion Safety on Structural Systems

Explosions induced by terrorist activities have been made cause great damage to buildings and cause many casualties. In attacks bybomb-laden vehicles, while the bomb-laden vehicles provide ease of access to the targeted structure, they have been the opportunity tobring various amounts of explosives according to the vehicle capacities. In the studies about explosion safety in the literature, someanalysis methods are encountered on the basis of element or structural. Some of these are determining the performance of a singlestructural element under the effects of blast loads, performing collapse analyses in a structural system, and effect dynamic explosionloads on the structure. Within the scope of this study, explosion analyses at different distances were made using the SAP2000 softwarebased on finite element method. The dynamic behaviour of the column located closest to the explosive was modelled in the RC-Blastsoftware, which analyses the column based on a single degree of freedom system, and column capacities were determined and evaluated. Seismic base isolation application for explosion safety of buildings has been proposed and the effect/capacity ratios occurring in thecolumn at the critical point for isolated and fixed-based building situations are compared. It was concluded that structures with seismicisolators absorb explosive effects better. Sheltered around a wall of the building have been recommended to reduce the effects ofexplosions. Although the behaviour of the structures under the effect of the explosion is not fully known, differentiation of solutionmethods may bring some approaches. It was concluded that the combination of element-based and system-based methods in explosionanalysis would produce more efficient results.

___

  • Al-Salloum, Y. A., Abbas, H., Almusallam, T. H., Ngo, T., & Mendis, P. (2017). Progressive collapse analysis of a typical RC high-rise tower. journal of king saud universityengineering sciences, 29(4), 313-320.
  • Army, U. S. (1990). Structures to resist the effects of accidental explosions, TM 5-1300. US Department of the Army Technical Manual, Washington, DC.
  • ASCE. (1985). Design of structures to resist nuclear weapons effects. ASCE manual 42.
  • Baker W.E., (1973) “Explosions in Air”, Univ. of Texas Press, Austin TX USA.
  • Draganić, H., & Sigmund, V. (2012). Blast loading on structures. Technical Gazette, 19(3), 643-652.
  • Federal Emergency Management Agency (FEMA). (2003). FEMA-426: Reference Manual to Mitigate Potential Terrorist Attacks against Buildings.
  • FEMA (2007). Risk Management Series, Site and Urban Design for Security Guidance Against Potential Terrorist Attacks, FEMA 430
  • FEMA. (2003). Primer for Design of Commercial Buildings to Mitigate Terrorist Attacks. FEMA 427.
  • Feng Fu., (2012), Response of a multi-story steel composite building with concentric bracing under consecutive column removal scenarios, Journal of Constructional Steel Research 70, 115–126.
  • Friedlander, F. G. (1946). The diffraction of sound pulses I. Diffraction by a semi-infinite plane. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 186(1006), 322-344.
  • Goel, M. D., & Matsagar, V. A. (2014). Blast-resistant design of structures. Practice Periodical on Structural Design and Construction,19(2). ttps://doi.org/10.1061/(ASCE)SC.1943- 5576.0000188
  • Greenemeier, L. (2008). Sticky Savior: US Army Readies a New Blast-Protection Adhesive for Deployment.
  • Guidebook, E. R. (2016). US Department of Transportation Pipeline and Hazardous Materials Safety Administration.
  • Hinman E, Engineers PHC (2017) Blast safety of the building envelope. Whole Building Design Guide 2017.Erişim adresi: https://www.wbdg.org/resources/blast-safety-buildingenvelope
  • Jacques, E. (2014). RCBlast (version. 0.5. 1)[Computer software].
  • Kennett, M. N., Letvin, E., Chipley, M., & Ryan, T. (2005). Risk Assessment: A how-to guide to mitigate potential terrorist attacks against buildings. FEMA Risk Management Series.
  • Kadhum, A. K., & Kadhum, L. K. (2020) Behavior Of Architectural And Structural For Steel Fram Tall Building Subjected To Blast Loads.
  • Karlos, V., & Solomos, G. (2013). Calculation of blast loads for application to structural components. Report EUR, 26456.
  • Karlos, V., Solomos, G., & Larcher, M. (2016). Analysis of the blast wave decay coefficient using the Kingery–Bulmash data. International Journal of Protective Structures, 7(3), 409–429. https://doi.org/10.1177/2041419616659572
  • Kazi, S. N., & Muley, P. V. (2017). Analysis of blast resistant RCC structure. International Research Journal of Engineering and Technology. www.irjet.net
  • Kingery, C. N., & Bulmash, G. (1984). Technical report ARBRLTR-02555: Air blast parameters from TNT spherical air burst and hemispherical burst. AD-B082, 713.
  • Liu, Y., Yan, J. B., & Huang, F. L. (2018). Behavior of reinforced concrete beams and columns subjected to blast loading. Defence Technology, 14(5), 550-559.
  • Mays, G., Smith, P. D., & Smith, P. D. (Eds.). (1995). Blast effects on buildings: Design of buildings to optimize resistance to blast loading. Thomas Telford.
  • National Research Council. (2002). Protecting People and Buildings from Terrorism: Technology Transfer for Blasteffects Mitigation. National Academies Press.
  • SAP2000, C. S. I. (2019). V21. Integrated Software for Structural Analysis and Design. Computer & Structures Inc. Berkeley, California, USA.
  • Saatcioglu, M., & Razvi, S. R. (1992). Strength and ductility of confined concrete. Journal of Structural engineering, 118(6), 1590-1607.
  • Shobha, R., Vinod, B. R., Prabhu, A. P., Shubhashree, G. R., & Yaksha, V. (2020). Response of Tall Structures Along Face Exposed to Blast Load Applied at Varying Distance. International Journal of Recent Technology and Engineering, 9(1), 455–460. https://doi.org/10.35940/ijrte.a1591.059120
  • Unified Facilities Criteria (UFC). (2008). Structures to resist the effects of accidental explosions. UHPFRC 3–, 340-02.
  • Url-1
  • Wang, W., Zhang, D., Lu, F., Wang, S. C., & Tang, F. (2012). Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading. International Journal of Impact Engineering, 49, 158-164.
  • Zhang, R., & Phillips, B. M. (2015). Numerical study on the benefits of base isolation for blast loading. In 6th international conference on advances in experimental structural engineering, 11th international on advance smart materials and smart structures technology work shop.