İnşaat Mühendisliğinde İnsansız Hava Araçları: Mevcut Düzenlemeler ve Uygulamalar

Son zamanlarda, İnsansız Hava Araçları (İHA) inşaat endüstrisinde yaygın olarak tercih edilmiştir ve uygulamaları inşaat şirketlerinin çalışma şeklini değiştirmektedir. Ancak, üretim ve inşaat arasındaki verimlilik açığı çok yüksektir. UAV’lerin yardımıyla, inşaat verimliliği geliştirilebilir. İHA inşaat mühendisliği disiplini ve şantiye faaliyetlerinin denetlenmesinden inşaat projelerinde kişisel güvenlik operasyonlarına kadar birçok uygulama için fayda sağlayabilir. Sahadaki ilerlemeler onlar tarafından kolayca izlenebilir ve ayrıca sahadaki kişilerin tehlikeli olabileceği yerlerde bulunan kişilerle çok hızlı bir şekilde araştırma yapılabilir. Nihayet UAV’ın kullanımına ilişkin uygulamalar sınırlıdır, ancak yakın gelecekte bu sadece inşaat sektöründe değişmeyecektir. Dronlar, hem yerel hem de global olarak, karmaşık ve ve detaylı durumları değerlendirmek için müşteriler, müteahhitler ve danışman mühendisler dahil paydaşlar arasında popülerlik kazanıyor. UAV’lerin kullanımı, proje yönetimi uzmanlarının sorunları anlamasını, kararları hızlı bir şekilde almasını ve gerekli acil önlemleri almasını sağlar. Bununla birlikte, eyalet düzenlemeleri ve yerel düzenlemeler kullanımlarını ve verimliliklerini sınırlamaktadır. İnşaat şirketleri, İHA teknolojisini projelerine uygulamak için düzenlemelerin ve risklerin farkında olmalıdır. Bu makale, İHA'ların inşaat sektöründeki güncel uygulamalarını yayınlayarak akademik makaleleri inceleyerek incelemeyi amaçlamaktadır. Ayrıca, farklı ülkelerde dronların kullanımıyla ilgili farklı düzenlemeler ABD, AB, Çin ve Türkiye gibi farklı ülke ve bölgelerde de incelenmektedir. Bu araştırma aynı zamanda, Türk makamlarına İHA’lar için sağlam bir yapı oluşturmada faydalı olabilecek bazı yasal öneriler de içermektedir.

Unmanned Aerial Vehicles for Civil Engineering: Current Practises and Regulations

Lately, Unmanned Aerial Vehicles (UAVs) have been widely preferred in construction industry, and their applications are changing theway construction companies work. Yet, the productivity gap between manufacturing and construction is very high. With the help ofUAV’s, construction productivity can be developed. UAV’s has may benefits for the civil engineering discipline and many variousapplications from inspection of any on-site activity to personal safety operations in construction projects. Site progress can be easilytracked by them and furthermore surveying can be done very fast withous having people at site where might be dangerous. Eventhoughcurrent practices of UAV’s use are limited, in the near future this will change not only in construction industry. Drones are gainingpopularity not only locally but globally among the stakeholders including clients, contractors and consultant engineers for assessingcomplex and and detailed situations. Use of UAV’s enables project management professionals understand the problems,makingdecisions fast and taking required immediate actions. However, state and local regulations are limiting their usages and efficiencies.Construction companies must be aware of the regulations and risks in order to apply UAV technology to their projects. This paper aimsto investigate the current practices of UAVs in construction industry by revieweing the publishes academic papers. Furthermore thedifferent regulations set regarding use of drones in different countries different countries and regions such as USA, EU,China and Turkeyare also investigated. This research also comprises some legal recommendations to the Turkish authorities which might be beneficial toestablish a solid structure for UAV’s.

___

  • Anania, E. C., Rice, S., Pierce, M., Winter, S. R., Capps, J., Walters, N. W., & Milner, M. N. (2019). Public support for police drone missions depends on political affiliation and neighborhood demographics. Technology in Society, 57(December 2018), 95–103. https://doi.org/10.1016/j.techsoc.2018.12.007
  • Anwar, Naveed Asian Institute of Technology, Izhar, Muhammad Amir, Kabot Systems Ltd, Najam, Fawad, N. U. of S. and T. (2018). Construction Monitoring and Reporting using Drones and Unmanned Aerial Construction Monitoring and Reporting using Drones and Unmanned Aerial Vehicles ( UAVs ).
  • Aydin, B. (2019). Public acceptance of drones: Knowledge, attitudes, and practice. Technology in Society, 101180. https://doi.org/10.1016/j.techsoc.2019.101180
  • Barmpounakis, E. N.,Vlahogianni, E. I.,Golias, J. C. Unmanned Aerial Aircraft Systems for transportation engineering: Current practice and future challenges. International Journal of Transportation Science and Technology, 2016, 5.3: 111-122.
  • Bognot, J. R., Candido, C. G., Blanco, A. C., Rene, J., & Montelibano, Y. (2020). Building Construction Progress Monitoring Using Unmanned Aerial System ( UAS ), Low-Cost Photogrammetry, and Geographic Information System ( GIS ), IV(June 2018), 4–7.
  • Caldas, Carlos H.; Soibelman, Lucio; Gasser, Les. Methodology for the integration of project documents in model-based information systems. Journal of Computing in Civil Engineering, 2005, 19.1: 25-33.
  • Changali, S., Mohammad, A., & Nieuwland, M. van. (2015). The construction productivity imperative.
  • Chen, Jessie YC. UAV-guided navigation for ground robot tele-operation in a military reconnaissance environment. Ergonomics, 2010, 53.8: 940-950.
  • Cheung, C., Grocholsky, B.. UAV-UGV Collaboration with a PackBot UGV and Raven SUAV for Pursuit and Tracking of a Dynamic Target. In: SPIE Defense and Security Symposium. International Society for Optics and Photonics, 2008. p. 696216-696216.
  • Choi, Sungsuk; KIM, Eungkon. Image acquisition system for construction inspection based on small unmanned aerial vehicle. In: Advanced Multimedia and Ubiquitous Engineering. Springer, Berlin, Heidelberg, 2015. p. 273-280.
  • Clarke, R. (2016). Appropriate regulatory responses to the drone epidemic. Computer Law and Security Review, 32(1), 152–155. https://doi.org/10.1016/j.clsr.2015.12.010
  • Clarke, R., & Bennett Moses, L. (2014). The regulation of civilian drones’ impacts on public safety. Computer Law and Security Review, 30(3), 263–285. https://doi.org/10.1016/j.clsr.2014.03.007
  • De Melo, R.R. S, et al. Applicability of unmanned aerial system (UAS) for safety inspection on construction sites. Safety science, 2017, 98: 174-185.
  • Diaz-Vilarino,L., et al. Determining the limits of unmanned aerial photogrammetry for the evaluation of road runoff. Measurement, 2016, 85: 132-141.
  • Dix, A., Finlay, J., Abowd, G., and Beale, R. (2004). “Human-computer interaction”, (3rd ed.), Prentice-Hall, Inc., 2004.
  • Heredia, Guillermo, et al. Multi-unmanned aerial vehicle (UAV) cooperative fault detection employing differential global positioning (DGPS), inertial and vision sensors. Sensors, 2009, 9.9: 7566-7579.
  • Dobson, RJ., Brooks, C, Roussi, C, and Colling, T. “Developing an unpaved road assessment system for practical deployment with high-resolution optical data collection using a helicopter UAV.” Proc., Unmanned Aircraft Systems (ICUAS), 2013 International Conference on, Piscataway, NJ. 235-243
  • Dupont, Quentin FM, et al. Potential Applications of UAV along the Construction's Value Chain. Procedia Engineering, 2017, 182: 165- 173.
  • Egan, John, C. T. F. (1998). Rethingking Construction.
  • Farber, H. B. Eyes in the sky: constitutional and regulatory approaches to domestic drone deployment. 2014.
  • Finn, R. L., & Wright, D. (2012). Unmanned aircraft systems: Surveillance, ethics and privacy in civil applications. Computer Law and Security Review, 28(2), 184–194. https://doi.org/10.1016/j.clsr.2012.01.005
  • Fiorillo, F, Jiménez, B., Remondino, F, & Barba, S. (2012). 3D surveying and modeling of the archaeological area of Paestum, Italy. Virtual Archaeol Rev, 4, 55–60.
  • Floreano D, Wood RJ. Science, technology and the future of small autonomous drones. Nature 2015; 521:460–466.
  • Gheisari, M, Irizarry, J, and Walker, B. “UAS4SAFETY: The Potential of Unmanned Aerial Systems for Construction Safety Applications.” Proc., Construction Research Congress 2014, Reston, VA. 1801-1810.
  • Goedert, J. D.; MeadatiI, P.. Integrating construction process documentation into building information modeling. Journal of construction engineering and management, 2008, 134.7: 509-516.
  • Han, K, Lin, J, and Golparvar-Fard, M. “A Formalism for Utilization of Autonomous VisionBased Systems and Integrated Project Models for Construction Progress Monitoring.” Proc., 2015 Conference on Autonomous and Robotic Construction of Infrastructure
  • Irizarry, J, Gheisari, M, & Walker, B. (2012). Usability Assessment of Drone Technology as Safety Inspection Tools. Journal of Information Technology in Construction, 17, 194–212.
  • Ingham, L. A., Jones, T., and Maneschijn, A.. Considerations for UAV design and operation in South African airspace. The aeronautical journal, 2006, 110.1112: 695-701.
  • Kavoosi, Z., Raoufat, M. H., Dehghani, M., Abdolabbas, J., Kazemeini, S. A., & Nazemossadat, M. J. (2018). Feasibility of satellite and drone images for monitoring soil residue cover. Journal of the Saudi Society of Agricultural Sciences. https://doi.org/10.1016/j.jssas.2018.06.001
  • Kluckner, S, Birchbauer, J-A, Windisch, C, Hoppe, C, Irschara, A, Wendel, A, Zollmann, S, Reitmayr, G, and Bischof, H. “AVSS 2011 demo session: Construction site monitoring from highly-overlapping MAV images.” Proc., Advanced Video and Signal-Based Surveillance (AVSS), 2011 8th IEEE International Conference on, Piscataway, NJ. 531-532
  • Koon M. Construction of Sacramento Kings arena using award-winning drone monitoring system developed at Illinois; 2016.
  • Lavoie, M. Caterpillar Inc. and Redbird to Advance Work Site Intelligence with Drone Analytics. Caterpillar; 2015.
  • Lin, J, Han, K, & Golparvar-Fard, M. (2015). 2015. Proc, Computing in Civil Engineering, 2015, Reston, VA. 156–164.
  • Nex, Francesco; Remondino, Fabio. UAV for 3D mapping applications: a review. Applied Geomatics, 2014, 6.1: 1-15.
  • Michael, N, Shen, S, Mohta, K, Kumar, V, Nagatani, K, Okada, Y, Kiribayashi, S, Otake, K, Yoshida, K, Ohno, K, Takeuchi, E, and Tadokoro, S. (2014). “Collaborative Mapping of an Earthquake Damaged Building via Ground and Aerial Robots.” Field and Service Robotics, K. Yoshida, and S. Tadokoro, eds., Toronto, Canada: Springer Berlin Heidelberg, 33-47.
  • Morgenthal, G., Hallerman, N. Quality assessment of Unmanned Aerial Vehicle (UAV) based visual inspection of structures. Advances in Structural Engineering, 2014, 17.3: 289-302.
  • Okrent, Mark. Civil UAV activity within the framework of European Commission research. In: Proc. of AIAA 3 rd Unmanned Unlimited Technical Conference. 2004. p. 1-12.
  • Rao, B., Gopi, A. G., & Maione, R. (2016). The societal impact of commercial drones. Technology in Society, 45, 83–90. https://doi.org/10.1016/j.techsoc.2016.02.009.
  • Siebert, S, & Teizer, J. (2014). Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system. Automation in Construction, 41, 1–14.
  • Skycatch Inc.'s, https://www.skycatch.com/ (retrieved 20.06.2017).
  • Xie, F, Lin, Z, Gui, D, & Lin, H. (2012). Study on construction of 3D building based on UAV images. ISPRS – Int Arch Photogramm Remote Sens Spatial Inform Sci, XXXIX-B1, 469–473
  • Wakefield, J. Tomorrow's Buildings: Construction industry goes robotic. BBC Technology; 2016.
  • Wang, G., et al. Risk considerations in the use of unmanned aerial vehicles in the construction industry. 2016.
  • Wefelscheid, C, Hansch, R, & Hellwich, O. (2011). Threedimensional building reconstruction using images obtained by unmanned aerial vehicles. ISPRS – Int Arch Photogramm Remote Sens Spatial Inform Sci, XXXVIII-1/C22, 183–188.
  • Wen, M-C, and Kang, S-C. “Augmented Reality and Unmanned Aerial Vehicle Assist in Construction Management.” Proc., Computing in Civil and Building Engineering (2014), Reston, VA. 1570-1577.
  • Williams, V.. Privacy impact & the social aspects of public surveillance. Covert Policing Review 2008 .
  • Yamamoto, T, Kusumoto, H, and Banjo, K. “Data Collection System for a Rapid Recovery Work: Using Digital Photogrammetry and a Small Unmanned Aerial Vehicle (UAV).” Proc., Computing in Civil and Building Engineering (2014), Reston, VA. 875-882
  • Yang, J, Park, M-W, Vela, P A, & Golparvar-Fard, M (2015). Construction performance monitoring via still images, time-lapse photos, and video streams: Now, tomorrow, and the future. Advanced Engineering Informatics, 29(2), 211–224
  • Zhang, J, and Singh, S. “LOAM: Lidar Odometry and Mapping in Real-time.” Proc., Robotics: Science and Systems Conference (RSS 2014).
  • Zollmann, S, Hoppe, C, Kluckner, S, Poglitsch, C, Bischof, H, & Reitmayr, G. (2014). Augmented Reality for Construction Site Monitoring and Documentation. Proceedings Of the IEEE, 102(2), 137–154.