Görüntü İşleme ve Makine Öğrenmesi Yöntemleri ile Baca Gazı Sıcaklığının Tahmin Edilmesi

Bu makalede, küçük ölçekli fındık kömürü yakıtlı brülörde baca gazı sıcaklığı tahmini ile ilgili deneysel bir çalışma sunulmaktadır.Baca gazı sıcaklığı yakıt türüne göre belli bir aralıkta olması gerekir aksi durumda kazanda korozyona sebep olmaktadır. Bu çalışmakapsamında alev görüntüsünden öznitelikler elde edilmiştir. Bu öznitelikler ve DVR modeli ile baca gazı sıcaklığı tahmin edilmiştir.Alev görüntüsü CCD kamera ile alınmıştır. Aynı zamanda referans baca gazı sıcaklığı, baca gazı analizörü ile alınmıştır. Alevgörüntüsü ve sıcaklık değeri aynı bilgisayara kaydedilmiştir. Alev görüntüsü gri seviye görüntüsüne çevrilerek öznitelikler eldeedilmiştir. Öznitelikler elde edilirken alev görüntüsünün yoğunluk dağılımı kullanılmıştır. Bu işlem için iki tip dağılım kullanılmıştır.Birincisi görüntünün histogramı alınarak konumdan bağımsız yoğunluk dağılımının elde edilmesidir. İkincisi satır ve sütuntoplamlarını kullanarak uzamsal yoğunluk dağılımının elde edilmesidir. Bu iki özniteliğin kombinasyonlarından elde edilenöznitelikler 6 çeşit DVR modeli ile gerçekleştirilmiştir. En iyi sonuçlar, her iki dağılımdan elde edilen özniteliklerin birliktekullanıldığı öznitelik çıkarma yöntemi için kübik DVR modeli ile elde edilmiştir. Önerilen modelde baca sıcaklığı (T °C) R =0.97 doğruluk ile tahmin edilmiştir. Elde edilen sonuçlar baca gazı sıcaklığı ile alev görüntüsü arasında yüksek oranda bir ilişkiolduğunu göstermektedir.

Estimation of Flue Gas Temperature by Image Processing and Machine Learning Methods

This paper presents an experimental study on the flue gas temperature estimation in small-scale nut coal-fired boiler. The flue gas temperature must be within a certain range depending on the fuel type, otherwise it causes corrosion in the boiler. Within the scope of this study, features were obtained from flame image. The flue gas temperature was estimated with these features and the SVR model. The flame image was taken with a CCD camera. At the same time, the reference flue gas temperature was taken with the flue gas analyzer. The flame image and temperature are recorded on the same computer. Flame image is converted to gray scale image and features are obtained. The intensity distribution of the flame image was used when obtaining the features. Two types of distribution were used for this process. The first is the histogram of the flame image to obtain a location independent intensity distribution. The second is to obtain a spatial intensity distribution using row and column sums. The attributes obtained from the combinations of these two type features were performed with 6 kinds of SVR models. The best results were obtained for the cubic SVR model for the feature extraction method in which the attributes obtained from both distributions were used together. In the proposed model the flue temperature (T ° C) was estimated with R = 0.97 accuracy. The results show that there is a high correlation between the flue gas temperature and the flame image.

___

  • Baek, W. B., S. J. Lee, S. Y. Baeg, and C. H. Cho. 2001. “Flame Image Processing & Analysis for Optimal Coal Firing of Thermal Power Plant.” {ISIE 2001: IEEE International Symposium on Industrial Electronics Proceedeing, Vols I-III} {928-931}.
  • Bilgin, Abdullah. 2011. “Kazanlarda Enerji Verimliliği ve Emisyonlar.” Pp. 59–65 in VIII. Ulusal Tesisat Mühendisliği Kongresi. İzmir: TMMOB Makina Mühendisleri Odası.
  • Bonefacic, Igor, Paolo Blecich, I. Bonefačić, and -P Blecich. 2015. Two-Color Temperature Measurement Method Using BPW34 PIN Photodiodes. Vol. 35.
  • Conti, John, Paul Holtberg, Jim Diefenderfer, Angelina LaRose, James T. Turnure, and Lynn Westfall. 2016. International Energy Outlook 2016 With Projections to 2040.
  • GoldsWorthy, P., D. J. Eyre, and E. On. 2013. Value-in-Use (VIU) Assessment for Thermal and Metallurgical Coal. Vol. 2.
  • Golgiyaz, Sedat, Muhammed Fatih Talu, and Cem Onat. 2016. “Estimation of Excess Air Coefficient for Automated Feed Coal Burners with Image-Based Gauss Model.” Pp. 528–31 in International Conferece on Artificial Intelligence and Data Processing, IDAP’16. Malatya-Turkey.
  • González-Cencerrado, A., A. Gil, and B. Peña. 2013. “Characterization of PF Flames under Different Swirl Conditions Based on Visualization Systems.” Fuel 113:798–809.
  • González-Cencerrado, A., B. Peña, and A. Gil. 2012. “Coal Flame Characterization by Means of Digital Image Processing in a SemiIndustrial Scale PF Swirl Burner.” Applied Energy 94:375–84.
  • Hanbay, Kazim, Sedat Golgiyaz, and Muhammed Fatih Talu. 2017. “Real Time Fabric Defect Detection System on Matlab and C++/Opencv Platforms.” Pp. 1–8 in 2017 International Artificial Intelligence and Data Processing Symposium (IDAP). IEEE.
  • Huang, Benyuan, Zixue Luo, and Huaichun Zhou. 2010. “Optimization of Combustion Based on Introducing Radiant Energy Signal in Pulverized Coal-Fired Boiler.” Fuel Processing Technology 91(6):660–68.
  • Jiang, Zhi-Wei Wei, Zi-Xue Xue Luo, and Huai-Chun Chun Zhou. 2009. “A Simple Measurement Method of Temperature and Emissivity of Coal-Fired Flames from Visible Radiation Image and Its Application in a CFB Boiler Furnace.” Fuel 88:980–87.
  • Krabicka, Jan, Gang Lu, and Yong Yan. 2010. “A Spectroscopic Imaging System for Flame Radical Profiling.” Pp. 1387–91 in 2010 IEEE Instrumentation & Measurement Technology Conference Proceedings. IEEE.
  • Li, Nan, Gang Lu, Xinli Li, and Yong Yan. 2014. “Prediction of Pollutant Emissions of Biomass Flames Using Digital Imaging, Contourlet Transform and Radial Basis Function Network Techniques.” Conference Record - IEEE Instrumentation and Measurement Technology Conference 697–700.
  • Li, Nan, Gang Lu, Xinli Li, and Yong Yan. 2016. “Prediction of NOx Emissions from a Biomass Fired Combustion Process Based on Flame Radical Imaging and Deep Learning Techniques.” Combustion Science and Technology 188(2):233–46.
  • Liu, Zhuwei, Shu Zheng, Zixue Luo, and Huaichun Zhou. 2016. “A New Method for Constructing Radiative Energy Signal in a CoalFired Boiler.” Applied Thermal Engineering 101:446–54.
  • Lou, Chun, Huai Chun Zhou, Peng Feng Yu, and Zhi Wei Jiang. 2007. “Measurements of the Flame Emissivity and Radiative Properties of Particulate Medium in Pulverized-Coal-Fired Boiler Furnaces by Image Processing of Visible Radiation.” Proceedings of the Combustion Institute 31 II:2771–78.
  • Parveen, Nusrat, Sadaf Zaidi, and Mohammad Danish. 2017. “Development of SVR-Based Model and Comparative Analysis with MLR and ANN Models for Predicting the Sorption Capacity of Cr(VI).” Process Safety and Environmental Protection 107:428– 37.
  • Peña, B., C. Bartolomé, and A. Gil. 2017. “Analysis of Thermal Resistance Evolution of Ash Deposits during Co-Firing of Coal with Biomass and Coal Mine Waste Residues.” Fuel 194:357–67.
  • Qi, Minfang, Huageng Luo, Peijun Wei, and Zhongguang Fu. 2018. “Estimation of Low Calorific Value of Blended Coals Based on Support Vector Regression and Sensitivity Analysis in Coal-Fired Power Plants.” Fuel 236:1400–1407.
  • Quej, Victor H., Javier Almorox, Javier A. Arnaldo, and Laurel Saito. 2017. “ANFIS, SVM and ANN Soft-Computing Techniques to Estimate Daily Global Solar Radiation in a Warm Sub-Humid Environment.” Journal of Atmospheric and Solar-Terrestrial Physics 155:62–70.
  • Vapnik, Vladimir N. 2000. The Nature of Statistical Learning Theory. Springer.
  • Wang, F., X. J. Wang, Z. Y. Ma, J. H. Yan, Y. Chi, C. Y. Wei, M. J. Ni, and K. F. Cen. 2002. “The Research on the Estimation for the NOxemissive Concentration of the Pulverized Coal Boiler by the Flame Image Processing Technique.” Fuel 81(16):2113–20.
  • Wang, Zhichao, Min Liu, Mingyu Dong, and Lian Wu. 2017. “Riemannian Alternative Matrix Completion for Image-Based Flame Recognition.” IEEE Transactions on Circuits and Systems for Video Technology 27(11):2490–2503.
  • Wu, Feng, Hao Zhou, Tao Ren, Ligang Zheng, and Kefa Cen. 2009. “Combining Support Vector Regression and Cellular Genetic Algorithm for Multi-Objective Optimization of Coal-Fired Utility Boilers.” Fuel 88:1864–70.
  • Xiangyu, Zhang, Zheng Shu, Zhou Huaichun, Zhang Bo, Wang Huajian, and Xu Hongjie. 2016. “Simultaneously Reconstruction of Inhomogeneous Temperature and Radiative Properties by Radiation Image Processing.” International Journal of Thermal Sciences 107:121–30.
  • Xiangyu, Zhang, Lu Xu, Yang yu, Zhang Bo, and Xu Hongjie. 2018. “Temperature Measurement of Coal Fired Flame in the Cement Kiln by Raw Image Processing.” Measurement: Journal of the International Measurement Confederation.
  • Zhou, H., Han, C. 1994. “An Exploratory Investigation of the Computer-Based Control of Utility Coal-Fired Boiler Furnace Combustion.” Pp. 111–16 in J. Eng. Therm. Energy Power.