Potansiyometrik Raktopamin Seçici Elektrot Geliştirilmesi ve Uygulaması

Bu çalışmada, raktopamin miktarını belirlemek için potansiyometrik iyon seçici bir elektrot (ISE) geliştirildi. Raktopamin, aslında solunum yolu hastalıklarının tedavisi için geliştirilmiş ve veterinerlikte ve insan tıbbında tokolitik, bronkodilatör ve kalp tonik olarak kullanılmakta olan ß2-adrenerjik agonist özelliklere sahip bir feniletanolamindir (1). Raktopamin-Tetrafenilborat iyon çifti sentezlendi. Sentezlenen iyon çifti, elektrot membranının yapısında iyonofor olarak kullanıldı. Membranların optimizasyonu için, PVC membran iyon seçici elektrotları, sentezlenen iyon çiftleri kullanılarak çeşitli bileşimlerde üretildi ve bu elektrotların potansiyometrik performans özellikleri araştırıldı. % 5 Rak-TPB +% 32 PVC +% 62,6 DBF +% 0,4 KTpClPB (Potasyum tetrakis (4-klorofenil borat) bileşimine sahip olan elektrodun en iyi potansiyometrik performans özelliklerini gösterdiği tespit edildi. Bu elektrodun doğrusal çalışma aralığı, eğimi, tayin limiti, pH aralığı ve cevap zamanı aralığı sırasıyla 1.0 x $10^{-5}$ -1.0 x $10^{-1}$ M; 51.0 mV; 1.0 x $10^{-5}$ M, 3.0-5.0 ve

Developing a Potentiometric Ractopamine-Selective Electrode and Its Application

In this study, a potentiometric ion-selective electrode (ISE) was developed in order to quantify ractopamine. Ractopamine is aphenylethanolamine with ß2-adrenergic agonist properties; was in fact developed for treating respiratory diseases; and is used astocolytic, bronchodilator and heart tonic in veterinary and human medicine (1). Ion-pair of Ractopamine-Tetraphenylborate wassynthesized. The ion pair that was synthesized was employed as ionophore in the structure of electrode membranes. For the optimizationof the membranes, PVC membrane ion-selective electrodes were produced in various compositions using the synthesized ion pairs andpotentiometric performance characteristics of these electrodes were explored. It was determined that the electrode with the compositionof 5% Rac-TPB+32%PVC+62.6%DBF+0.4% KTpClPB (Potassium tetrakis (4-chlorophenyl borate) demonstrated the bestpotentiometric performance characteristics. The linear range, slope, limit of quantification, pH range, and response time of this electrodewere determined to be 1.0×$10^{-5}$-1.0×$10^{-1}$ M, 51.0 mV/decade, 1.0×$10^{-5}$ M, 3.0-5.0, and< 5s, respectively. The electrode has demonstrateda highlyrepeatable potentiometric response. It was applied in pigswill using ractopamine selective electrode.

___

  • Blanca, J., Munoz, P., Morgado, M., Mendez, N., Aranda, A., Reuvers, T., & Hooghuis, H. (2005). Determination of clenbuterol, ractopamine and zilpaterol in liver and urine by liquid chromatography tandem mass spectrometry. Analytica Chimica Acta, 529, 199–205.
  • Bolera, D. D., Shrecka, A. L., Faulknera, D. B., Killefera, J., McKeitha, F. K., Hommb, J. W. & Scanga, J. A. (2012). Effect of ractopamine hydrochloride (Optaflexx) dose on live animal performance, carcass characteristics and tenderness in early weaned beef steers. Meat Science, 92, 458–463.
  • Brambilla, G., T. Cenci, F. Franconi, R. Galarini, A. Macrì, F. Rondoni, M. Strozzi, A. & Loizzo, (2000). Clinical and pharmacological profile in a clenbuterol epidemic poisoning of contaminated beef meat in Italy, Toxicology Letters, 114, 47–53.
  • Dong, J. X., Li, Z. F., Lei, H. T., Sun, Y. M., Ducancel, F., Xu, Z. L., Boulain, J. C., Yang, J. Y., Shen, Y. D., & Wang, H. (2012). Development of a single-chain variable fragmentalkaline phosphatase fusion protein and a sensitive direct competitive chemiluminescent enzyme immunoassay for detection of ractopamine in pork. Analytica Chimica Acta, 736, 85–91.
  • Halsey, C. H. C., Weber, P. S., Reiter, S. S., Stronach, B. N., Bartosh, J. L., & Bergen, W. G. (2011). The effect of ractopamine hydrochloride on gene expression in adipose tissues of finishing pigs. Journal of Animal Science, 89, 1011–1019.
  • He, L. M., Su, Y. J., Zeng, Z. L., Liu, Y. H., & Huang, X. H. (2007). Determination of ractopamine and clenbuterol in feeds by gas chromatography–mass spectrometry. Animal Feed Science and Technology, 132, 316–323.
  • Lu, X., Zheng, H., Li, X. Q., Yuan, X. X., Li, H., Deng, L. G., Zhang, H., Wang, W. Z., Yang, G. S., Meng, M., Xi, R. M., & AboulEnein, H. Y. (2012). Detection of ractopamine residues in pork by surface plasmon resonance-based biosensor inhibition immunoassay. Food Chemistry, 130, 1061–1065.
  • Pleadin, J., Perši, N., Vulic´ , A., Milic´ , D., & Vahcˇic´ , N. (2012). Determination of residual ractopamine concentrations by enzyme immunoassay in treated pig’s tissues on days after withdrawal. Meat Science, 90, 755–758.
  • Shen, L.,& He, P. L. (2007). An electrochemical immunosensor based on agarose hydrogel films for rapid determination of ractopamine. Electrochemistry Communications, 9, 657–662.
  • Turberg, M. P., Rodewald, J. M., & Coleman, M. R. (1996). Determination of ractopamine in monkey plasma and swine serum by highperformance liquid chromatography with electrochemical detection. Journal of Chromatography B, 675, 279– 285.
  • Von Haehling, S., Lainscak, M., Springer, J. & Anker, S.D. (2009). Cardiac cachexia: a systematic overview, Pharmacology & Therapeutics, 121, 227–252.
  • Wang, W. Y., Zhang, Y. L., Wang, J. Y., Shi, X. S., & Ye, J. N. (2010). Determination of ß-agonists in pig feed, pig urine and pig liver using capillary electrophoresis with electrochemical detection. Meat Science, 85, 302–305.