Iğdır ili 080 Devlet Karayolu Boyunca Tarım Topraklarında Ağır Metal Kirliliği

Doğal topraklar, kentleşme, sanayileşme ve aşırı gübre ve pestisit kullanımı gibi çeşitli insan faaliyetleri ile kirlenmiştir. Bununlabirlikte, özellikle uluslararası olanlar olmak üzere otoyolların yanındaki tarımsal topraklar, yoğun yol trafiğine bağlı olarak nispetendaha yüksek ağır metal kirliliği riski altındadır. Bu nedenle, Türkiye Iğdır'da 080 uluslararası karayolunda araç kaynaklı ağır metalkirliliğini aydınlatmak için 24 örnekleme noktasından toplam 72 toprak numunesi 5 km aralıklarla alınmıştır. Toprak numunelerininözellikleri belirlendikten sonra, toplam ve bitki tarafından alınabilir miktarları DTPA ile ekstrakte edilerek ölçülmüştür. Sonuçlar, toplamve alınabilir ağır metal konsantrasyonlarının büyük ölçüde otoyola olan mesafelere bağlı olduğunu göstermiştir. Genel olarak, otoyoladaha yakın mesafe, daha yüksek element konsantrasyonları ölçülmüştür. Uzaklıktan en çok etkilenen elementler demir ve çinkoolmuştur (p> 0.01) ve bunları nikel (p Cu> Zn> Fe> Mn ve alınabilir değerler için Cu> Zn>Mn> Fe> Ni şeklinde sıralanmıştır. Kirlilik yük endeksleri (PLI) genel olarak nikel (Ni) değerleri dışında toplam mikro besinlerin kirlilikendekslerinden (PI) daha yüksek ve genellikle alınabilir değerlerin kirlilik endekslerinden (PI) daha düşük hesaplanmıştır. Ni ve Cu'nunnispeten daha kısa sürede çevre açısından riskli seviyelere ulaşma ihtimalinin yüksek olduğu sonucuna varılabilir.

Heavy Metal Pollution in the Agricultural Soils alongside Highway080 of Igdir Province

Natural soils have been polluted by variety of human activity such as urbanization, industrialization and excessive fertilizer and pesticideusage. However, the agricultural soils alongside the highways, especially those of international ones, are relatively at higher risk ofheavy metal pollution depending on the intensive track traffic. Therefore, total of 72 soil samples from the 24 sampling sites were takenat 5 km interval to elucidate the vehicle-induced heavy metal pollution on the international highway 080 in Igdir, Turkey. Aftercharacterising the soil samples, their total and DTPA extractable or plant available concentrations were determined. The results showedthat the concentrations of total and available heavy metals were highly dependent on the distances from the highway. In general, thecloser distance to highway resulted in higher element concentrations. Iron and zinc were the most affected elements (p>0.01), andfollowed by nickel (pCu>Zn>Fe>Mn for the total concentrations and Cu>Zn>Mn>Fe>Nifor the available fractions. The pollution load indices (PLI) were generally higher than the pollution indices (PI) of total micronutrientsexcept nickel (Ni) values, and were generally lower than the pollution indices (PI) of available ones. It can be concluded that Ni and Cuwere likely to reach environmentally risky levels in relatively shorter time.

___

  • [1] Alloway, B. J. (2013). Heavy metals and metalloids as micronutrients for plants and animals. Heavy metal in soils pp 195-209. Springer Science + Business Media Dordrecht, e-ISBN 978-94-007-4470-7.
  • [2] Gür, N., Topdemir, A., Munzuroğlu, Ö., & Çobanoğlu, D. (2004). Heavy metal ions (Cu+2, Pb+2, Hg+2, Cd+2) Clivia sp. effects of plant pollen on germination and tube growth (In Turkish). F. U. Journal of Science and Mathematics, 16(2), 177-182.
  • [3] Oehlenschläger, J. (2000). Identifying Heavy Metals in Fish. In: Safety and Quality Issues in Fish Processing (Ed. Bremmer, H.A.), pp. 95-108. Woodhead Publishing Limited. Cambridge, England.
  • [4] Khandar, C., & Kosankar, S. (2014). A review of vehicular pollution in urban India and its effects on human health. Journal of Advanced Laboratory Research in Biology, 3,1-8.
  • [5] Adomaitis, T., Mazvila, J., &. Eitminavicius, L. (2003). A comparative study of heavy metals in the soils of cities and arable lands. Ekologija Vilnius, 3-12.
  • [6] Uluocak, G. E. (2006). Taking of heavy metals by plants (In Turkish). Kahramanmaraş Sütçü İmam University, Graduate School of Natural and Applied Sciences, Master Thesis.
  • [7] Kızıloğlu, F. T., & Bilen, S. (2005). Soil pollution and biological environment (In Turkish). Atatürk University, Journal of Agricultural Faculty, 36(1), 83-88.
  • [8] Karapınar, H. S. 2020. Evaluation of some toxic metal levels in treatment waters. European Journal of Science and Technology, 21, 301-306.
  • [9] KGM. (2021a). 18. Region State Highways Volume Maps (In Turkish). http://www.kgm.gov.tr/Sayfalar/KGM/SiteTr/Trafik/ TrafikHacimHaritasi. Date of access: 28.02.2021.
  • [10]Şimşek, O., Nadaroğlu, Y., Yücel, G., Yıldırım, M., & Erciyas, H. (2017). Frost event and frost calendar of Turkey (In Turkish). State Meteorology Service Publications, pp. 177, Ankara, Turkey.
  • [11]Karaoğlu, M., Şimşek, U., Erdel, E., & Tohumcu, F. (2018). A case study: Wind characteristics of Igdir province in terms of wind erosion and introduction of second wind erosion area. Fresenius Environmental Bulletin, 27(11), 7460-7469.
  • [12]Bouyoucos, G. D. (1951). A Recalibration of the hydro-meter method for making mechanical analysis of the soil. Agronomy Journal, 43, 434-438.
  • [13]Richards, L. A. (1954). Diagnosis and improvement of saline and alkaline soils. Handbook 60. Department of Agriculture, United States.
  • [14]Allison, L. E., & Moodie, C. D. (1965). Carbonate. In C.A. Black et al. (ed.) Methods of soil analysis. Part 2. 2nd edition.
  • [15]Walkley, A. (1947). A critical examination of a rapid method for determining organic carbon in soils: Effect of variations in digestion conditions and inorganic soil constituents. Soil Science, 63, 251-263.
  • [16]Dellavalle, N. B. (1992). Determination of specific conductance in supertanat 1:2 soil/water solution in handbook on reference methods for soil analysis. Soil and Plant Analysis Council, Inc. Athens, GA.
  • [17]Orbey, M. T., Göğer, N. G., Ertaş, N., Yılmaz, Ş., Berkkan, A., Basan, H., Şatana, E., & Alp, O. (2012). Analytical chemistry practices, (In Turkish). G.Ü. Pharmaceutics Faculty Publications, No: 3, Ankara.
  • [18]Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42, 421-428.
  • [19]Sağlam, M. T. (1994). Chemical Analysis Methods of Soil and Water (In Turkish). Trakya University, Tekirdağ Agricultural Faculty, Publication No: 189, Supplementary Textbook No: 5, Tekirdağ, Turkey.
  • [20]Sposito, G. (2008). The chemistry of soils. Oxford University Press, 2nd Edition, ISBN 978-0-19-531369-7, pp. 329.
  • [21]ÇŞB. (2005). Soil Pollution Regulation (In Turkish). Appendix 1-A Soil Pollution Parameters Limit Values, Heavy Metal Limit Values in Soil, The Ministry of Environment and Urbanization. (Official Gazette Dated 31.05.2005 and Numbered 25831).
  • [22]Kacar, B. (2019). Micronutrients in sustainable agriculture (In Turkish). Nobel Publisher, 1st Edition, pp. 708.
  • [23]He, Z. L., Yang, X. E., & Stoffella, P. J. (2005). Trace elements in agroecosystems and impact on the environment. Journal of Trace Elements in Medicine and Biology, 19, 125- 140.
  • [24]Fageria, N.K. (2009). The use of nutrients in crop plants. CRC Press, pp. 430, Taylor and Francis Groups, New York.
  • [25]ECDGE. (2021b). European Commission Directorate General Environment. Heavy Metals and Organic Compounds from Wastes Used as Organic Fertilizers. Final Report, July. WPA Consulting Engineers Inc. Ref. Nr. TEND/AML/2001/07/20, pp. 73-74. http://ec.europa.eu/environment/waste/compost/pdf/hm_fina lreport.pdf Date of access: 28.02.2021.
  • [26]Gardea-Torresdey, J. L., Peralta-Videa, J. R., & de la Rosa, G. (2005). Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coordination Chemistry Reviews, 249, 1797-1810.
  • [27]Wei, B., Jiang, F., Li, X., & Mu, S. (2009). Spatial distribution and contamination assessment of heavy metals in urban road dusts from Urumqi, NW China. Microchemical Journal, 93, 147-152.
  • [28]Siti Norbaya, M. R., Sharizal, H., Mohd Lias, K., & NorShahrizan, M. H. (2014). Analysis and pollution assessment of heavy metal in soil, Perlis. The Malaysian Journal of Analytical Sciences, 18(1), 155-161.
  • [29]Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of Heavy Metal Levels in Estuaries and the formation of Pollution Index. Helgolander Wissenschaftliche Meeresunters, 33, 566-572.
  • [30]Demiralay, İ. (1993). Soil physical analysis (In Turkish). Erzurum Atatürk University Publications No: 143, Erzurum, Turkey.
  • [31]Aydın, A., & Sezen, Y. (1995). Soil chemistry laboratory book (In Turkish). E.A.U. Agricultural Faculty Course Publications No: 174, 146 pages, Offset plant, Erzurum, Turkey.
  • [32]Aydemir, O. (1992). Plant nutrition and soil fertility (In Turkish). Erzurum Atatürk University Publications. No: 734, Erzurum, Turkey.
  • [33]Neina, D. (2019). The role of soil pH in plant nutrition and soil remediation. Applied and environmental soil science, Volume 2019, Article ID 5794869, pp. 1-9. https://doi.org/10.1155/2019/5794869.
  • [34]Karaoğlu, M., Şimşek, U., Tohumcu, F., & Erdel, E. (2017). Determining surface soil properties of wind erosion area of Igdir-Aralik and estimating the soil loss. Fresenius Environmental Bulletin, 26(5), 3170-3175.
  • [35]Durgun, B., Uygur, V., Durgun, B., & Sukuşu, E. (2017). Assessment of relations between micro element availability and soil properties in Isparta-Atabey plain using principal component analysis. Anadolu Journal of Agricultural Sciences, 32, 258-268. doi.org/10.7161/omuanajas.321115.
  • [36]Soriano, A., Pallarés, S., Pardo, F., Vicente, A.B., Sanfeliu, T., & Bech, J. (2012). Deposition of heavy metals from particulate settleable matter in soils of an industrialised area. Journal of Geochemical Exploration, 113, 36-44.
  • [37]Mandal, A., & Voutchkov, M. (2011). Heavy metals in soils around the Cement Factory in Rockfort, Kingston, Jamaica. International Journal of Geosciences, 2, 48-54.
  • [38]Guo, G., Wu, F., Xie, F., & Zhang, R. (2012). Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China. Journal of Environmental Sciences, 24(3), 410-418.
  • [39]Koz, B., Cevik, U., & Akbulut, S. (2012). Heavy metal analysis around Murgul (Artvin) copper mining area of Turkey using moss and soil. Ecological Indicators, 20, 17- 23.
  • [40]Mater, B. (2004). Soil Geography (In Turkish). Çantay Publisher, 3rd Edition, pp. 271, Istanbul, Turkey.
  • [41]Taciroğlu, B., Kara, E. E., & Sak, T. (2016). Use of worms in soil heavy metal removal (In Turkish). KSU, Journal of Natural Sciences, 19(2), 201-207.
  • [42]Mattigod, S. V., & Page, A. L. (1983). Assessment of metal pollution in soils. In I. Thornton, £d. Applied environmental geochemistry, pp. 355-394 Academic Press. London.
  • [43]Kabata-Pendias, A. (2001). Trace elements in soils and plants. CRC Press, 3 rd Edition, 10, 208-212.
  • [44]Kabata-Pendias A., & Pendias, H. (1992). Trace Elements in Soils and Plants. 2nd ed. CRC Press.
  • [45]Scheffer, F., & Schachtschabel, P. (1989). Textbook of soil science 12. New Edition, Aufl, Unter Mitarb, Von W.R. Fischer, Ferdinand Enke Verlag, Stuttgart.