Haşhaş Kapsülü Küspesinin Sabit Yataklı Reaktörde Katalitik Pirolizi

İnsanlık tarihinde teknoloji, bilim ve sanayinin gelişmesi ile enerji türlerinin kullanımının arttığı görülmüştür. Biyokütle enerjisiyenilenebilir ve bol bulunan enerji kaynaklarından bir tanesidir. Biyokütleden piroliz işlemi ile gaz, sıvı (bioyağ) ve katı ürünler (char)elde edilemektedir. Piroliz ürünü olan biyoyağ yakıt olarak değerlendirilebilmektedir. Bu doğtultu da yapılan bu çalışmada, biyokütleolarak seçilen haşhaş küspesinden piroliz yöntemi ile biyoyağ eldesinde katalizörün biyoyağ ürün verimine etkisi araştırılmıştır.Piroliz işlemleri sabit yataklı piroliz reaktöründe 500˚C sıcaklıkta, 10°C/dk ısıtma hızında, 1L/dk azot akış hızında ve farklı oranlarda$Na_2CO_3$ katalizörü kullanılarak gerçekleştirilmiştir. Yapılan piroliz çalışmalarında %20 katalizör oranında en yüksek % 9,8 biyoyağverimi elde edilmiştir. Elde edilen bu biyoyağ FT-IR, GC-MS ve ısıl değer analizleri yapılarak karakterize edilmiştir. GC-MSsonuçları incelendiğinde biyoyağın alifatik, aromatik, keton, ester, fenol ve yağ asitleri gibi farklı fonksiyonel gruplara sahipbileşiklerden oluştuğu belirlenmiştir. FT-IR analizi GC-MS analiz sonuçlarını doğrulamıştır. Katalizör kullanımı biyoyağın ısıldeğerini artırmış ve 30,57 MJ/kg olarak tespit edilmiştir.

Catalytic Pyrolysis of Poppy Capsule Pulp in Fixed Bed Reactor

With the development of technology, science and industry in the history of humanity, it has been observed that the use of several energy types has increased. Gas, liquid (bio oil) and solid products (char) are obtained from pyrolysis process from biomass. Pyrolysis product is a good candidate for usage as fuel. In this study for this purpose, the pyrolysis of poppy capsule pulp for bio-oil production was conducted to investigate the effect of catalyst on liquid yield. Pyrolysis was carried out in a fixed bed pyrolysis reactor at a temperature of 500˚C, heating rate of 10 ° C / min, nitrogen flow rate of 1L / min and using different ratios of $Na_2CO_3$ as catalyst. In the pyrolysis studies, the highest oil yield,9.8 %, was obtained at the rate of 20 % catalyst. The obtained bio oil was characterized by FTIR, GC-MS and thermal value analysis. When the GC-MS results were examined, it was found that the bio oil was composed of compounds having different functional groups such as aliphatic, aromatic, ketone, ester, phenol and fatty acids. FT-IR analysis confirmed the GC-MS analysis results. The use of catalyst increased the thermal value of the bio oil and was determined to be 30.57 MJ / kg.

___

  • Agrawalla, A., Kumar, S., & Singh, R. K. (2011). Pyrolysis of groundnut de-oiled cake and characterization of the liquid product. Bioresource technology, 102(22), 10711-10716.
  • Ateş, F., Pütün, E., & Pütün, A. E. (2004). Fast pyrolysis of sesame stalk: yields and structural analysis of bio-oil. Journal of Analytical and Applied Pyrolysis, 71(2), 779-790.
  • Collard, F. X., & Blin, J. (2014). A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews, 38, 594-608.
  • Hopa, D. Y., Yılmaz, N., Alagöz, O., Dilek, M., Helvacı, A., & Durupınar, Ü. (2016). Pyrolysis of poppy capsule pulp for bio-oil production. Waste Management & Research, 34(12), 1316-1321.
  • Ellabban, O., Abu-Rub, H., & Blaabjerg, F. (2014). Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews, 39, 748-764.
  • Erlich, C., Öhman, M., Björnbom, E., & Fransson, T. H. (2005). Thermochemical characteristics of sugar cane bagasse pellets. Fuel, 84(5), 569-575.
  • Imran, A., Bramer, E. A., Seshan, K., & Brem, G. (2014). High quality bio-oil from catalytic flash pyrolysis of lignocellulosic biomass over alumina-supported sodium carbonate. Fuel processing technology, 127, 72-79.
  • Raveendran, K., Ganesh, A., & Khilar, K. C. (1995). Influence of mineral matter on biomass pyrolysis characteristics. Fuel, 74(12), 1812-1822.
  • Morales, S., Miranda, R., Bustos, D., Cazares, T., & Tran, H. (2014). Solar biomass pyrolysis for the production of bio-fuels and chemical commodities. Journal of Analytical and Applied Pyrolysis, 109, 65-78.
  • Nayan, N. K., Kumar, S., & Singh, R. K. (2013). Production of the liquid fuel by thermal pyrolysis of neem seed. Fuel, 103, 437-443.
  • Nguyen, T. S., Zabeti, M., Lefferts, L., Brem, G., & Seshan, K. (2013). Conversion of lignocellulosic biomass to green fuel oil over sodium based catalysts. Bioresource technology, 142, 353-360.
  • Nzihou, A., Stanmore, B., Lyczko, N., & Minh, D. P. (2019). The catalytic effect of inherent and adsorbed metals on the fast/flash pyrolysis of biomass: A review. Energy, 170, 326-337.
  • Pütün, E., Uzun, B. B., & Pütün, A. E. (2006). Fixed-bed catalytic pyrolysis of cotton-seed cake: effects of pyrolysis temperature, natural zeolite content and sweeping gas flow rate. Bioresource Technology, 97(5), 701-710.
  • Safar, M., Lin, B. J., Chen, W. H., Langauer, D., Chang, J. S., Raclavska, H., ... & Pétrissans, M. (2019). Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction. Applied Energy, 235, 346-355.
  • Shadangi, K. P., & Mohanty, K. (2014). Comparison of yield and fuel properties of thermal and catalytic Mahua seed pyrolytic oil. Fuel, 117, 372-380.
  • Shah, M. H., Deng, L., Bennadji, H., & Fisher, E. M. (2015). Pyrolysis of potassium-doped wood at the centimeter and submillimeter scales. Energy & Fuels, 29(11), 7350-7357.
  • Uçar, S., & Karagöz, S. (2009). The slow pyrolysis of pomegranate seeds: The effect of temperature on the product yields and bio-oil properties. Journal of analytical and applied Pyrolysis, 84(2), 151-156.