İçme Suyu Kaynaklarındaki Trihalometan Oluşumunun İncelenmesi

İçme suyu kaynakları doğal organik maddeler (DOM) içermektedir. Suda bulunan bu organik maddelerin dezenfeksiyon sürecindeklorla reaksiyona girmesi sonucu Trihalometan (THM) olarak adlandırılan klorlu yan ürünler oluşmaktadır. THM’lar kanserojen etkiyesahip bileşikler olmasından dolayı insan ve çevre sağlığı açısından son derece sakıncalıdır. Bu çalışmada, doğal organik madde içereniçme suyu kaynaklarının klorlanması sonucu meydana gelen toplam trihalometan oluşum potansiyeli (THMOP) ve trihalometan (THM)bileşiklerinin dağılımına etki eden başlıca faktörler incelenmiştir. Çalışma alanı ve içme suyu kaynağı olarak Terkos Gölü (İstanbul),Büyükçekmece Gölü (İstanbul), Ulutan Barajı (Zonguldak) seçilmiştir. Alınan ham su örneklerinde, doğal organik madde miktarı,Toplam Organik Karbon (TOK), 254 nm’de UV absorban ($UV_{254}$) ve spesifik UV absorban (SUVA) parametrelerinin analizlerilaboratuvar ortamında gerçekleştirilmiştir. En yüksek SUVA değerine sahip Terkos gölü ham sularında bulunan DOM’lerin organikkarbonu, hidrofobik özellik gösteren fraksiyonlu bileşiklerden meydana gelirken, daha düşük değere sahip Büyükçekmece gölü veUlutan Barajı ham sularında bulunan DOM’in ise daha çok hidrofilik özellik gösteren organiklerden meydana geldiği tespit edilmiştir.Diğer yandan söz konusu içme suyu kaynaklarından alınan ham su örnekleri belirli $Cl_2$/TOK oranlarına göre klorlanarak 2-168 saatlikreaksiyon süresine maruz bırakılmış ve sonunda meydana gelen THM miktarlarının analizleri EPA-551.1 metodunda yer alan sıvı-sıvıekstraksiyon yöntemine göre gerçekleştirilmiştir. En yüksek THM konsantrasyonları (en yüksek SUVA değerine sahip organik karbonuhidrofobik yapıda olan) Terkos ham sularının klorlanması sonucu elde edilmiştir. Bu çalışmada ayrıca farklı pH, klor dozu ve reaksiyonsüresinin klorlama sırasında meydana getirdiği THM ve THM türlerinin dağılımı üzerindeki etkileri de gösterilmiştir. Özellikle alkalipH’larda daha yüksek THM oluşumları tespit edilmiş olup, aynı şekilde daha yüksek klor dozlarında ve bekletme sürelerinde dahayüksek THM oluşumlarının gözlenmesi bu çalışmanın elde edilen önemli sonuçlarından biri olmuştur.

Investigation of Trihalomethane Formation in Drinking Water Resources

Drinking water sources contain natural organic materials (NOM). The reaction of these organic substances with chlorine during disinfection process produces chlorinated by-products called trihalomethane (THM). THM’s are extremely dangerous for human and environmental health because they are carcinogenic compounds. In this study, we investigated the potential of total formation of Trihalometan (THM) due to chlorination of drinking water resources with natural organic matters (NOM), and the main factors affecting the distribution of Trihalomethane (THM) compounds. Terkos Lake (Istanbul), Büyükçekmece Lake (Istanbul) and Ulutan Dam (Zonguldak) were selected as the study area and drinking water source. Along with parameters of Total Organic Carbon(TOC), analysis of UV absorbed ($UV_{254}$) and specific UV absorbance (SUVA) parameters at 254 nm, the amount and analysis of natural organic matter in raw water samples were carried out in laboratory. In the raw waters of Terkos Lake, which has the highest SUVA value, the DOM was found to be mostly composed of organics with hydrophilic properties. On the other hand, raw water samples taken from these drinking water sources were chlorinated according to certain $Cl_2$ / TOC ratios and subjected to a reaction time of 2-168 hours. The evaluation of output of this reaction as the THM amounts were carried out according to the liquid-liquid extraction method of EPA551.1 method. The highest THM concentrations were obtained by chlorination of Terkos raw waters (hydrophobic organic carbon with the highest SUVA value). In this study, the effects of different PH, chlorine dose and reaction time on the distribution of THM and THM species produced during chlorination were also shown. In particular, higher THM formations were detected at alkaline pH, and higher THM formations at higher chlorine doses and retention times were one of the important results of this study.

___

  • Barret, S.E., Krasner, S.W., & Amy, G.L. (2000). Natural organic material and disinfection byproducts: Characterization and Control in drinking water-An overview. ACS Symposium Series Vol. 761
  • Bellar T.A., Lichtenberg, J.J., & Kroner, R.C. (1974). The occurrence of organohalides in chlorinated drinking waters. J Am Water Works Assoc, 66, 703–6.
  • Benjamin, M.M., Li, C.W., & Korshin, G.V. (1997). The decrease of UV absorbance as a indicator of TOX formation. Water Res, 31(4), 946-949.
  • Cedergren, M.I., Selbing, A.J., Löfman, O., & Bengt, A.J. (2002). Chlorination by products and nitrate in drinking water and risk for congenital cardiac defects. Environ Res, 89(2), 124–30.
  • Croue, J.P. (2004). Isolation of humic and non-humic NOM fractions: Structural characterization. Environ. Monit. Assess, 92 (1-3), 93- 207.
  • Croue´, J.P., Korshin, G.V., & Benjamin, M. (2000). Characterization of Natural Organic Matter in Drinking Water. Report no. 90780. miexde Am. Water Works Assoc. Research Foundation, USA
  • Dodds, L., King, W., Woolcott, C., & Pole, J. (1999). Trihalomethanes in public water supplies and adverse birth outcomes. Epidemiology, 10(3), 233–41.
  • EC. (1998). EEC Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Official Journal of the European Communities, L 330/32 5.12.98.
  • Edzwald, J.K., & Van Benschoten, J.E. (1990). Aluminum coagulation of natural organic matter, In, Chemical water and wastewater treatment., p. 341-359, Eds. Hahn, H.H., Klute, R., Springer, Berlin.
  • Edzwald, J.K., Becker, W.C., & Wattier, K.L. (1985). Surrogate parameters for monitoring organic matter and THM precursors. J Am Water Works Assoc, 77, 122–32.
  • Elshorbagy, W.E., Abu-Qadais, H., & Elsheamy, M.K. (2000). Simulation of THM species in water distribution systems. Water Res, 34, 3431–9.
  • Gang, D. (2001). Modeling of THM and HAA formation in Missouri waters upon chlorination, PhD Thesis, Dissertation, the University of Missouri, Columbia, USA.
  • Hwang, C.J., Sclimenti, M.J., & Krasner, S.W. (2000). Disinfection by-products formation reactivities of natural organic matter fractions of a low humic water, American Chemical Society Series 761:173-187
  • Her, N., Amy, G., Chung, J., Yoon, J., & Yoon, Y. (2008). Characterizing dissolved organic matter and evaluating associated nanofiltration membrane fouling, Chemosphere, 70, 495–502.
  • Lefebvre, O., & Moletta, R. (2006). Treatment of organic pollution in industrial saline wastewater: a literature review, Water Res, 40, 3671–3682.
  • Owen, D.M., Amy, G.L., Chowdhury, Z.K., Paode, R., Mccoy, G., & Viscosil, K. (1995). NOM – characterization and treatability, J. Am. Water Works Ass, 87, 46–63.
  • Vilge-Ritter, A., Masion, A., Boulange, T., Rybacki, D., & Bottero, J.Y. (1999). Removal of natural organic matter by coagulationflocculation: a pyrolysis-GC-MS study. Environ. Sci. Technol, 33, 3027–3032.
  • Ivancev, V.T., Dalmacijam, B., Tamas, Z., & Karlovic, E. (2002). The effect of different drinking water treatment processes on the rate of chloroform formation in the reactions of natural organic matter with hypochlorite. Water Res, 33, 3715–22.
  • Jacangelo, J.G., Demarco, J., Owen, D.M., & Randtke, S.J. (1995). Selected processes for removing NOM – an overview, J. Am Water Works Ass, 87, 64–77
  • Kitis, M., Karanfil, T., Kilduff J. E., & Wigton, A. (2001). The reactivity of natural organic matter to disinfection by-products formation and its relation to specific ultraviolet absorbance. Water Science and Technology, 43(2), 9–16.
  • Kitis, M., Karanfil, T., Kilduff J. E., & Wigton, A. (2002). Probing reactivity of dissolved organic matter for disinfection by-product formation using XAD-8 resin adsorption and ultrafiltration fractionation, Water Res, 36(15), 3834–3848.
  • Lei, Y.D., & Wania, F. (2004). Is rain or snow a more efficient scavenger of organic chemicals? Atmos Environ, 38, 3557–3571.
  • Liang, L., & Singer, P.C. (2003). Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water. Environ Sci Technol, 37(13), 2920–8.
  • Ma, J., Zhang, T., Lu, J., & Chen, Z. (2009). Evaluation of disinfection byproducts formation during the chlorination and chloramination of dissolved organic matter fractions isolated from a filtered water, J Hazard. Materials. 162, 140-145.
  • Ozdemir, K., Toroz, I., & Uyak, V. (2013). Assessment of trihalomethane formation in chlorinated raw waters with differential UV spectroscopy approach. Sci World J, 19, 1–8. SM. (2005). AWWA, WEF Standard Methods for the Examination of Water and Waste Water, Washington, DC, USA, 21th edition.
  • Özdemir, K., Toröz, I., & Uyak, V. (2014). Relationship Among Chlorine Dose, Reaction Time and Bromide Ions on Trihalomethane Formation in Drinking Water Sources in Istanbul, Turkey Asian J. Chem, 26 (20), 6935-9.
  • Pontius, F. (1993). D/DBP rule to set tight standards. J Am Water Works Assoc, 85, 22–30.
  • Randtke, S.C., Hoehn, R.C., Knocke, W.R., Dietrich, A.M., Long, B.W., Wang, N. (1994). A comprehensive assestment of DBP precusor removal by enhanced coagulation and softening, In: proceedings AWWA conference, 737, June 19-23.
  • Reckhow, D.A., Singer, P.C., & Malcolm, R.L. (1990). Chlorination of humic materials: byproduct formation and chemical interpretations. Environ Sci Technol, 24, 1655–64.
  • Roccaro, P., Chang, H.S., Vagliasindi, G.A.F. & Korshin, G.V. (2008). Differential absorbance study of effects of temperature on chlorine consumption and formation of disinfection by-products in chlorinated water, Water Res, 42, 1879-1888.
  • Uyak, V., & Toroz, I. (2007). Disinfection by-product precursors reduction by various coagulation techniques in Istanbul water supplies. J Hazard. Materials, 141(1), 320–328.
  • Uyak, V., Ozdemir, K., & Toroz, I. (2008). Seasonal variations of disinfection by-product precursors profile and their removal through surface water treatment plants. Sci.Tot. Environ, 390(2–3), 417–424.
  • Rodriguez, M.J., & Serodes, J.B. (2001). Spatial and temporal evolution of trihalomethanes in three water distribution systems. Water Res, 35, 1572–86.
  • Rook, J.J. (1974). Formation of haloforms during chlorination of naturals waters. Water Treat Exam, 23, 234–43.
  • Sadiq, R., & Rodriguez, M.J. (2004). Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review, Water Res, 321, 21–46.
  • Sharp, E.L., Parsons, S.A., & Jefferson, B. (2006). Seasonal variations in natural organic matter and its impact on coagulation in water treatment, Sci. Total Environ, 363, 183–194.
  • Sharp, E.L., Parsons, S.A., & Jefferson, B. (2006). The impact of seasonal variations in DOC arising from a moorland peat catchment on coagulation with iron and aluminum salts, Environ. Pollut, 140, 436–443.
  • Summers, R.S., & Roberts, P.V. (1988). Activated carbon adsorption of humic substances: 1. Heterodisperse mixtures and desorption, J. Colloid Interf. Sci, 122, 367–381.
  • TSE-266. (2012). Regulation concerning water intended for human consumption and drinking water standarts. Turkish Ministry of Health, Official News Paper, 2005; 25730. Ankara
  • USEPA. (2003a). National primary drinking water regulations: stage 2 disinfectants and disinfection byproducts (D/DBP). Final rule, 68, 159.
  • USEPA. (2003b). Method 552.3. Determination of haloacetic acids and dalapon in drinking water by liquid-liquid microextraction, derivatization and gas chromatography with electron-capture detection,. Technical Support Center, Office of Groundwater and Drinking Water. Cincinnati, Ohio: US Environmental Protection Agency.
  • Uyak, V., Toroz, I., & Meric, S. (2005). Monitoring and modeling of trihalomethanes (THM) for a water treatment plant in Istanbul, Desalination, 176, 91–101.
  • Yang, C.Y., Cheng, B.H., Tsai, S.S., Wu, T.N., Lin, M.C., Lin, K.C. (2000). Association between chlorination of drinking water and adverse pregnancy outcome in Taiwan. Environ Health Perspect, 108(8), 765–8.
  • Yetis, U., Dilek, F.B., Sahinkaya, E., Kaplan, S.S., & Ates, N. (2007). Occurance of disinfection by products in low DOC surface waters in Turkey, J Hazard.Mat, 142, 526- 534.
  • Zou, H., Yang, S., & Xu, O. (1997). Formation of POX and NPOX with chlorination of fulvic acid in water: emprical models. Water Res, 31(6), 1536- 1541.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç
Sayıdaki Diğer Makaleler

Diyarbakır İli Bazı Kiraz Bahçelerinde Bulunan Zararlı ve Faydalı böcek Türleri ile Bazı Önemli Zararlı Türlerin Doğada Görülme Zamanı

Mehmet KAPLAN

Küçük Bir Güneş Bacasının Sıcaklık Dağılımlarının İncelenmesi

Aynur UÇAR, Duygu EVİN

V-alanında Minimum Açılı Kutup Yerleşimi Yöntemine Göre Kesir Dereceli PI Denetçi Tasarımı ve Dayanıklı Kontrol Performansının İncelenmesi

Sevilay TÜFENKÇİ, Bilal ŞENOL, Barış Baykant ALAGÖZ

Geri Dönüştürülmüş Cam Kumlu Betonun Mühendislik Özellikleri ve Sürdürülebilirlik Değerlendirmesi

Şevket Can BOSTANCI

VMAT Tekniği ile Hazırlanan Prostat Radyoterapi Planlarında Farklı Kolimatör Açılarının Etkisi

Hazım Orhan KIZILKAYA, Yonca YAHŞİ ÇELEN

rayollarında Yeni Teknolojik Gelişmeler Üzerine Bir Değerlendirme

Kemal ARMAĞAN

Yanıt Yüzey Metodolojisi Kullanılarak Dulavratotu (Arctium Lappa) 'dan Antioksidanların Mikrodalga Destekli Ekstraksiyonunun Modellenmesi ve Optimizasyonu

Burcu BEKDEŞER

Bir Mobilya Üretim Tesisinde İş Analizi ve Benzetim Uygulaması ile Süreç Verimliliğinin Artırılması

Abdullah SÜTÇÜ, Osman KARŞIYAKA, Mustafa Emrah BURHAN

Bazı Penisilinlerin Farmasötik Dozaj Formlarından Voltametrik Tayinleri

Gizem YILDIRIM BAŞTEMUR, Mehmet SARI, Sabriye PERÇİN ÖZKORUCUKLU

Doğal Olarak Yayılış Gösteren Lepidium draba L. Türünün Fitoremediasyon Yönteminde Kullanılabilirliğinin Araştırılması

Burak SÜRMEN, Dudu Duygu KILIÇ, Emine Ebru TUNA, Hamdi Güray KUTBAY