Poli(sodyum 4-stiren sülfonat) Kaplı $SnO_2$ Nanoparçacıklarının Sentezi, Karakterizasyonu ve Gaz Algılama Özelliklerinin İncelenmesi

Bu çalışmada, poli(etilen glikol)(PEG)-Kalay Oksit/poli(sodyum 4-stiren sülfonat) PEG-$SnO_2$/PSS nanokompozitleri, 2 saat boyuncadimetil formamid (DMF) varlığında hidrotermal işlemle hazırlandı. Bunun için yüzey aktif madde PEG ile birlikte daha öncedensentezlenmiş olan 16,4 nm büyüklüğündeki $SnO_2$ nanoparçacıkları kullanıldı. PEG-SnO2/PSS nanokompoziti, PSS ve PEG-$SnO_2$ ilebirlikte DMF varlığında 0°C reaksiyon sıcaklığında 2 saat sürede sentezlendi. Hazırlanan PEG-SnO2/PSS nanokompozitinin yapısal veelementel analizi, taramalı elektron mikrokopisi (SEM), Enerji Dağılım X-Işınları Spektrometresi (EDS), X-ışını difraksiyonu (XRD)ve Fourier transform infrared (FTIR) spektroskopisi teknikleri ile yapıldı. FTIR ve XRD analizleri $SnO_2$ nanoparçacıklarının PSSpolimer yapısına katıldığını gösterirken, SEM ve EDS analizleri$SnO_2$nanoparçacıklarının morfolojik yapısının, PSS ile kompozitlerihazırlandığında PSS polimeri ile kapsüllenerek nanoyapıdan mikroküre yapılara dönüştüğünü gösterdi. Ayrıca, sonuçlar, PEG-$SnO_2$yüzeyinin, güçlü π-π etkileşimleri altında PSS ile % 39,53'lük bir kapsülleme oranı ile kaplandığını gösterdi. Bu örneklerin amonyak,etanol, aseton, formaldehit ve kloroform gibi uçucu organik bileşen (VOC) buharlarına karşı gaz duyarlılıkları, oda sıcaklığında, ikiprobe tekniği ile elektrometre kullanılarak incelendi. PEG-$SnO_2$ nanoparçacıklarının etanol gazı için yüksek algılama performansısergilediği görüldü. Saf olarak kullanılan PSS, VOC gazlarının hepsine karşı yüksek oranda duyarlılık gösterdi. Deney sonuçlarına göre,PSS ile kapsüllenen PEG-$SnO_2$ nanokompozitinin gaz sensörü malzemesi olarak kullanım potansiyelinin arttırılabildiği söylenebilir.

Synthesis, Characterization and Investigation of Gas Sensing Properties of Poly (sodium 4-styrene sulfonate)-Decorated $SnO_2$ Nanoparticles

In this study, polyethylene glycol (PEG)-Tin Oxide/Poly(sodium 4-styrene sulfonate) (PEG-SnO2/PSS) nanocomposites were prepared by hydrothermal method in the presence of dimethyl formamide (DMF) for 2 hours. For this purpose, $SnO_2$ nanoparticles of 16.4 nm size previously synthesized using PEG as a surfactant were used. The PEG-$SnO_2$/PSS nanocomposite was synthesized with PSS andPEG-$SnO_2$ in the presence of DMF at a reaction temperature of 0°C for 2 hours. The morphology and elemental analysis of PEG$SnO_2$/PSS nanocomposite were analyzed by scanning electron microcopy (SEM), Energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. FTIR and XRD analyzes showed that $SnO_2$ nanoparticles were incorporated into the PSS polymer structure, while SEM and EDS analysis showed that the morphological structure of $SnO_2$ nanoparticles was transformed from nanostructures into microsphere by encapsulating them with PSS polymer. Also, the results showed that the PEG-$SnO_2$ surface was coated with PSS at an encapsulation rate of 39.53% under strong π-π interactions. Gas sensitivities of these samples against volatile organic compound (VOC) vapors such as ammonia, ethanol, acetone, formaldehyde and chloroform were investigated by two probe techniques using electrometer at room temperature. PEG-$SnO_2$ nanoparticles showed high detection performance for ethanol gas. The pure PSS illustrated a high level of sensitivity to all VOC gases. According to the experimental results, it can be said that the PEG-$SnO_2$ nanocomposite encapsulated by PSS can be used as a gas sensor material.

___

  • Adamczyk, Z., Jachimska, B., Jasiński, T., Warszyński, P., & Wasilewska, M. (2009). Structure of poly (sodium 4-styrenesulfonate) (PSS) in electrolyte solutions: Theoretical modeling and measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 343(1–3), 96–103. https://doi.org/10.1016/j.colsurfa.2009.01.035
  • Adnan, R., Razana, N. A., Rahman, I. A., & Farrukh, M. A. (2010). Synthesis and characterization of high surface area tin oxide nanoparticles via the sol-gel method as a catalyst for the hydrogenation of styrene. Journal of the Chinese Chemical Society, 57(2), 222–229. https://doi.org/10.1002/jccs.201000034
  • Andre, R. S., Chen, J., Kwak, D., Correa, D. S., Mattoso, L. H. C., & Lei, Y. (2017). A flexible and disposable poly(sodium 4- styrenesulfonate)/polyaniline coated glass microfiber paper for sensitive and selective detection of ammonia at room temperature. Synthetic Metals, 233(July), 22–27. https://doi.org/10.1016/j.synthmet.2017.08.005
  • Andre, R. S., Pereira, J. C., Mercante, L. A., Locilento, D., Mattoso, L. H. C., & Correa, D. S. (2018). ZnO-Co3O4 heterostructure electrospun nanofibers modified with poly(sodium 4-styrenesulfonate): Evaluation of humidity sensing properties. Journal of Alloys and Compounds, 767, 1022–1029. https://doi.org/10.1016/j.jallcom.2018.07.132
  • Athawale, A. A., & Kulkarni, M. V. (2000). Polyaniline and its substituted derivatives as sensor for aliphatic alcohols. Sensors and Actuators, B: Chemical, 67(1), 173–177. https://doi.org/10.1016/S0925-4005(00)00394-4
  • Boran, F. (2016). Grafen- İnorganik Nanokompozitlerinin Hazırlanması, Karakterizasyonu ve Gaz Sensör Özelliklerinin İncelenmesi. (Doktora tezi), Cumhuriyet Üniversitesi/Fen Bilimleri Enstitüsü, Sivas.
  • Boran, F., & Çetinkaya, S. (2016). Influence of Reaction Time on the Size of SnO 2 Nanospheres and Its Sensing Properties to VOC Gases. International Journal of Biological and Medical Science, 1(2), 1–4. Retrieved from http://iakkurt.dergipark.gov.tr/ijbimes
  • Boran, F., & Çetinkaya, S. (2017). Synthesis, characterization and sensing behavior of WO3 nanocrystalline powder for toluene vapor. Acta Physica Polonica A, 132(3). https://doi.org/10.12693/APhysPolA.132.572
  • Boran, F., Çetinkaya, S., & Şahin, M. (2017). Effect of surfactant types on the size of tin oxide nanoparticles. Acta Physica Polonica A, 132(3), 546–548. https://doi.org/10.12693/APhysPolA.132.546
  • Castro, M., Kumar, B., Feller, J. F., Haddi, Z., Amari, A., & Bouchikhi, B. (2011). Novel e-nose for the discrimination of volatile organic biomarkers with an array of carbon nanotubes (CNT) conductive polymer nanocomposites (CPC) sensors. Sensors and Actuators, B: Chemical, 159(1), 213–219. https://doi.org/10.1016/j.snb.2011.06.073
  • Deshpande, N. G., Gudage, Y. G., Sharma, R., Vyas, J. C., Kim, J. B., & Lee, Y. P. (2009). Studies on tin oxide-intercalated polyaniline nanocomposite for ammonia gas sensing applications. Sensors and Actuators, B: Chemical, 138(1), 76–84. https://doi.org/10.1016/j.snb.2009.02.012
  • Du, A. K., Yang, K. L., Zhao, T. H., Wang, M., & Zeng, J. B. (2016). Poly(sodium 4-styrenesulfonate) wrapped carbon nanotube with low percolation threshold in poly(ε-caprolactone) nanocomposites. Polymer Testing, 51, 40–48. https://doi.org/10.1016/j.polymertesting.2016.02.008
  • Farrukh, M. A., Heng, B. T., & Adnan, R. (2010). Surfactant-controlled aqueous synthesis of SnO2 nanoparticles via the hydrothermal and conventional heating methods. Turkish Journal of Chemistry, 34(4), 537–550. https://doi.org/10.3906/kim-1001-466
  • Fenoy, G. E., Schueren, Benoit Van der Scotto, J., Boulmedais, F., Ceolín, M. R., Bégin-Colin, S., Bégin, D., & Marmisollé, Waldemar A. Azzaroni, O. (2018). Layer-by-layer assembly of iron oxide-decorated few-layer graphene/PANI:PSS composite films for high performance supercapacitors operating in neutral aqueous electrolytes. Electrochimica Acta, 283, 1178–1187. https://doi.org/10.1016/j.electacta.2018.07.085
  • Firooz, A. A., Mahjoub, A. R., & Khodadadi, A. A. (2011). Hydrothermal synthesis of ZnO/SnO2 nanoparticles with high photocatalytic activity. World Academy of Science, Engineering and Technology, 76(4), 138–140.
  • Guo, Q., & Li, M. (2016). Electrodeposition of poly(sodium 4-styrenesulfonate)-silver nanocomposites for electrochemical detection of H2O2. International Journal of Electrochemical Science, 11(9), 7705–7713. https://doi.org/10.20964/2016.09.14
  • Kondawar, S. B., Agrawal, S. P., Nimkar, S. H., Sharma, H. J., & Patil, P. T. (2012). Conductive polyaniline-tin oxide nanocomposites for ammonia sensor. Advanced Materials Letters, 3(5), 393–398. https://doi.org/10.5185/amlett.2012.6361
  • Li, L., Ferng, L., Wei, Y., Yang, C., & Ji, H. F. (2012). Effects of acidity on the size of polyaniline-poly(sodium 4-styrenesulfonate) composite particles and the stability of corresponding colloids in water. Journal of Colloid and Interface Science, 381(1), 11–16. https://doi.org/10.1016/j.jcis.2012.05.004
  • Lucattini, L., Poma, G., Covaci, A., de Boer, J., Lamoree, M. H., & Leonards, P. E. G. (2018). A review of semi-volatile organic compounds (SVOCs) in the indoor environment: occurrence in consumer products, indoor air and dust. Chemosphere, 201, 466– 482. https://doi.org/10.1016/j.chemosphere.2018.02.161
  • Mirza, A. Z., & Shamshad, H. (2019). Fabrication and characterization of doxorubicin functionalized PSS coated gold nanorod. Arabian Journal of Chemistry, 12(1), 146–150. https://doi.org/10.1016/j.arabjc.2014.08.009
  • Patil, G. E., Kajale, D. D., Gaikwad, V. B., & Jain, G. H. (2012). Preparation and characterization of SnO2 nanoparticles by hydrothermal route. International Nano Letters, 2(1), 2–6. https://doi.org/10.1186/2228-5326-2-17
  • Shi, P. W., Li, Q. Y., Li, Y. C., & Wu, C. F. (2014). Preparation and characterization of poly(sodium 4-styrenesulfonate)-decorated hydrophilic carbon black by one-step in situ ball milling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 443, 135–140. https://doi.org/10.1016/j.colsurfa.2013.10.060
  • Tran, M. H., Yang, C. S., & Jeong, H. K. (2016). Fast and economical reduction of poly (sodium 4-styrene sulfonate) graphite oxide film by plasma. Electrochimica Acta, 196, 769–774. https://doi.org/10.1016/j.electacta.2016.03.004
  • Tung, T. T., Castro, M., Pillin, I., Kim, T. Y., Suh, K. S., & Feller, J. F. (2014). Graphene-Fe3O4/PIL-PEDOT for the design of sensitive and stable quantum chemo-resistive VOC sensors. Carbon, 74, 104–112. https://doi.org/10.1016/j.carbon.2014.03.009
  • Weschler, C. J. (2009). Changes in indoor pollutants since the 1950s. Atmospheric Environment, 43(1), 153–169. https://doi.org/10.1016/j.atmosenv.2008.09.044
  • Yu, H. W., Kim, H. K., Kim, T., Bae, K. M., Seo, S. M., Kim, J. M., … Kim, Y. H. (2014). Self-powered humidity sensor based on graphene oxide composite film intercalated by poly(sodium 4-styrenesulfonate). ACS Applied Materials and Interfaces, 6(11), 8320–8326. https://doi.org/10.1021/am501151v
  • Zamand, N., Pour, A. N., Housaindokht, M. R., & Izadyar, M. (2014). Size-controlled synthesis of SnO2 nanoparticles using reverse microemulsion method. Solid State Sciences, 33, 6–11. https://doi.org/10.1016/j.solidstatesciences.2014.04.005
  • Zhang, L., Xu, Z., & Dong, S. (2006). Electrogenerated chemiluminescence biosensor based on Ru(bpy)32+ and dehydrogenase immobilized in sol-gel/chitosan/poly(sodium 4-styrene sulfonate) composite material. Analytica Chimica Acta, 575(1), 52–56. https://doi.org/10.1016/j.aca.2006.05.069
  • Zhang, Z., & Xu, X. (2014). Wrapping carbon nanotubes with poly (sodium 4-styrenesulfonate) for enhanced adsorption of methylene blue and its mechanism. Chemical Engineering Journal, 256, 85–92. https://doi.org/10.1016/j.cej.2014.06.020
  • Zhao, B., Zhang, G., Song, J., Jiang, Y., Zhuang, H., Liu, P., & Fang, T. (2011). Bivalent tin ion assisted reduction for preparing graphene/SnO2 composite with good cyclic performance and lithium storage capacity. Electrochimica Acta, 56(21), 7340–7346. https://doi.org/10.1016/j.electacta.2011.06.037
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç