Cam Güneş Panelleri: Bir Derleme

Dünyada enerjiye olan ihtiyaç günden güne artmaktadır. Verimlilik ve güvenilirliklerindeki artış ve fiyatlarındaki düşüş sayesinde güneşpanellerinin (fotovoltaiklerin) kullanımı da dünya genelinde yaygınlaşmaktadır. Modern mimaride güneş paneli estetik özellikleri ve elektrik üretimi açısından tercih edilmektedir. Geleneksel güneş paneli sistemleri ağırlıklı olarak kristalin silisyum güneş hücrelerinden(c–SiPVs) üretilmektedir. Düşük fiyatlı güneş paneli hücreleri fiyat etkin ve enerji tasarruflu cam sistemlerinin üretimi bağlamındabüyük ilgi çekmektedir. Güneş panellerinin önemli bileşenlerinden birisi olan güneş control camı iç mekana giren gün ışığını ve ısısınıazaltması böylece yaşam konforu sağlaması ile mimaride ve otomotiv pencerelerinde yaygın olarak kullanımaktadır. Bu makalede camgüneş panelleri hakkında genel bir derleme çalışması sunulmaktadır.

Solar Glass Panels: A Review

The need for energy sources in the world is gradually increasing day by day. Photovoltaics (PVs) usage has worldwidely spread thanksto the efficiency and reliability increase and price decrease of solar panels. The photovoltaic (PV) glazing technique is a preferredmethod in modern architecture because of its aesthetic properties besides electricity generation. Traditional PV glazing systems aremostly produced from crystalline silicon solar cells (c–SiPVs). The development of low–cost PV cells for the production of cost– effective and energy–saving glass systems has been of great interest. Solar control glass which is one of the crucial components of PVpanels is largely employed for architectural and automotive windows to lower the sunlight and heat inlet for the comfort. Hereby ageneral overview of solar glass panels is presented.

___

  • [1] Handbook of glass, https://doi.org/10.1007.978-3-319-93728-1, Retrieved January 15, 2020.
  • [2] Ghosh A., Sundaram S., Mallick T. K., “Investigation of thermal and electrical performances of a combined semi–transparent PV– vacuum glazing”, Appl. Energy, 128, 1591–1600, 2018.
  • [3] Gürtürk, M., Benli H., Koçdemir Ertürk N., “Determination of the effects of temperature changes on solar glass used in photovoltaic modules”, Renew. Energy, 145, 711–724, 2020.
  • [4] https://www.spiritenergy.co.uk/kb-solar-glass-photovoltaicwindows, Retrieved April 23, 2020.
  • [5] https://www.onyxsolar.com/product-services/photovoltaic-glasssolutions/pv-curtain-wall, Retrieved April 23, 2020.
  • [6] Salem, B., “Solar panel design”, Bill, Salem Press Encyclopedia of Science, 2019.
  • [7] https://www.flickr.com/photos/usnationalarchives/7066049117, Retrieved May 02, 2020.
  • [8] https://eospso.nasa.gov/missions/nimbus-1, Retrieved January 15, 2020.
  • [9] https://news.energysage.com/the-history-and-invention-of-solarpanel-technology/, Retrieved January 15, 2020.
  • [10] https://www.theguardian.com/environment/2010/oct/05/whitehouse-green-solar-panels, Retrieved January 15, 2020.
  • [11] https://www.greenrhinoenergy.com/solar/technologies/solar_glass. php, Retrieved April 23, 2020.
  • [12] https://www.chinasolar-panel.com/classification-and-applicationof-solar-photovoltaic-glass.html, Retrieved April 23, 2020.
  • [13] https://www.glassonweb.com/articles, Retrieved April 23, 2020.
  • [14] https://www.powerfromsunlight.com/why-solar-panel-glass-isvery-important-when-choosing-solar-panel-type/, Retrieved April 20, 2020.
  • [15] http://www.fsolar.de/en, Retrieved April 20, 2020.
  • [16] https://yandex.com.tr/gorsel/search?from=tabbar&text=crack%20b ehavior%20of%20plain%20and%20tempered%20glasses, Retrieved April 20, 2020.
  • [17] Ebisawa J. and Ando E., “Solar control coating on glass”, Curr. Opin. Solid Mater. Sci., 3(4), 386–390, 1998.
  • [18] https://www.electrical4u.com/working-principle-of-photovoltaiccell-or-solar-cell/, Retrieved April 20, 2020.
  • [19] https://www.electricaltechnology.org/2015/06/how-to-make-asolar-cell-photovoltaic-cell.html/amp, Retrieved April 26, 2020.
  • [20] https://www.bing.com/images/search?q=Construction+Of+A+Sola r+Cell+Using+Silicon+Semiconductor&FORM=HDRSC2, Retrieved April 20, 2020.
  • [21] https://www.reportlinker.com/p05799686/?utm_source=PRN, Retrieved April 23, 2020.
  • [22] Cüce E., Riffat S. B., “Aerogel–assisted support pillars for thermal performance enhancement of vacuum glazing: A CFD research for a commercial product, Arab J. Sci. Eng., 40(8), 2233–38, 2015.
  • [23] Cüce E., Riffat S. B., “A state–of–the–art review on innovative glazing technologies”, Renew. Sustain. Energy Rev., 41, 695–714, 2015.
  • [24] Cüce E., Cüce P. M., “Vacuum glazing for highly insulating windows: Recent developments and prospects”, Renew. and Sustain. Energy Rev., 54,1345–1357, 2016.
  • [25] He Y. L., Xie T., “Advances of thermal conductivity models of nanoscale silica aerogel insulation material”, Appl. Therm. Eng., 81, 28–50, 2015.
  • [26] Long L., Ye H., Gao Y., Zou R., “Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings”, Appl. Energy, 136, 89–97, 2014.
  • [27] Qu J., Song J., Qin J., Song Z., Zhang W., Shi Y., Zhang T., Zhang H., Zhang R., He Z., Xue X., “Transparent thermal insulation coatings for energy efficient glass windows and curtain walls”, Energy Build., 77, 1–10, 2014.
  • [28] Favoino F., Overend M., Jin Q., “The optimal thermo–optical properties and energy–saving potential of adaptive glazing technologies”, Appl. Energy, 156, 1–15, 2015.
  • [29] Peng L. L., Yang H. and Ma T., “Comparative study of the thermal and power performances of a semi–transparent photovoltaic façade under different ventilation modes”, Appl. Energy, 138, 572–583, 2015.
  • [30] Skandalos N., Karamanis D., “PV glazing technologies”, Renew. Sustain. Energy Rev., 49, 306–22, 2015.
  • [31] https://yandex.com.tr/gorsel/search?text=Crystalline%20silicon%2 0solar%20cell&from=tabbar, Retrieved April 20, 2020.
  • [32] https://yandex.com.tr/gorsel/search?text=organic%20solar%20cell &from=tabbar, Retrieved April 20, 2020.
  • [33] https://yandex.com.tr/gorsel/search?text=build%2Cng%20%2Cinte grated%20solar%20cell&stype=image&lr=103835&source=wiz, Retrieved April 20, 2020.
  • [34] Miyazaki T., Akisawa A., Kashiwagi T., “Energy savings of office buildings by the use of semi–transparent solar for windows”, Renew. Energy, 30(3), 281–304, 2005.
  • [35] Park K. E., Kang G. H., Kim H. I., Yu G. J., Kim J. T., “Analysis of the thermal and electrical performance of semi–transparent photovoltaic (PV) module”, Energy, 35(6), 2681–2687, 2010.
  • [36] Kroon J. M., Bakker N. J., Smit H. J. P., Liska P., Thampi K. R., Wang P., Zakeeruddin S. M., Gratzel M., Hinsch A., Hore S., Wurfel U., Sastrawan R., Durrant J., Palomares E., Petterson H., Gruszecki T., Walter J., Skupien K., Tulloch G. E., “Nanocrystalline dye– sensitized solar cells having maximum performance”, Prog. Photovoltaics: Res. Appl., 15, 1–18, 2007.
  • [37] Nazeeruddin M. K., De Angelis F., Fantacci S., Selloni A., Viscardi G., Liska P., Ito S., Takeru B., Grätzel M., “Combined experimental and DFT–TDDFT computational study of photoelectrochemical cell ruthenium sensitizers”, J. Amer. Chem. Soc., 127(48), 16835–47, 2005.
  • [38] Dennler G., Sariciftci N. S., “Flexible conjugated polymer–based plastic solar cells: From basics to applications”, Proc. IEEE, 93(8), 1429–39, 2005.
  • [39] Jorgensen M., Normann K. and Krebs F. C., “Stability/degradation of polymer solar cells”, Sol. Energy Mater. & Sol. Cells, 92, 686– 714, 2008.
  • [40] Hau S. K., Yip H.–L., Jen A. K.–Y., “A Review on the development of the inverted polymer solar cell architecture”, Polym. Rev., 50(4), 474–510, 2010.
  • [41] Choi H., Lee J., Lee W., Ko S.–J., Yang R., Chul J., Han L., Woo Y., Yang C., Kim J. Y., “Acid–functionalized fullerenes used as interfacial layer materials in inverted polymer solar cells”, Organic Electronics, 14(11), 3138–45, 2013.
  • [42] Yang X., Chueh C.–C., Li C.–Z., Yip H.–L., Yin P., Chen H., Chen W.–C. and Jen A. K.–Y., “High–efficiency polymer solar cells achieved by doping plasmonic metallic nanoparticles into dual charge selecting interfacial layers to enhance light trapping”, Adv. Energy Mater., 3, 666–73, 2013.
  • [43] Brabec C. J., Gowrisanker S., Halls J. J. M., Laird D., Jia S. and Williams S. P., “Polymer–fullerene bulk–heterojunction solar cells”, Adv. Mater., 22(34), 3839–56, 2010.
  • [44] Kim H., Kushto G. P., Arnold C. B., Kafafi Z. H. and Piqué A., “Laser processing of nanocrystalline TiO2 films for dye–sensitized solar cells”, Appl. Phys. Lett., 85, 464–6, 2004.
  • [45] Schmidt–Mende L, Zakeeruddin S. M., Grätzel M., “Efficiency improvement in solid–state–dye–sensitized photovoltaics with an amphiphilic ruthenium–dye”, Appl. Phys. Lett., 86, 013504, 2005.
  • [46] Kang M. G., Park N.–G., Park Y. J., Ryu K. S., Chang S. H., “Manufacturing method for transparent electric windows using dye– sensitized TiO2 solar cells”, Sol. Energy Mater. & Sol. Cells, 75(3– 4), 475–79, 2003.
  • [47] Hinsch A., Brandt H., Veurman W., Hemming S., Nittel M., Würfel U., Putyra P., Lang–Koetz C., Stabe M., Beucker S., Fichte K., “Dye solar modules for facade applications: Recent results from project ColorSol”, Sol. Energy Mater. & Sol. Cells, 93(6–7), 820–24, 2009.
  • [48] Sastrawan R., Beier J., Belledin U., Hemming S., Hinsch A., Kern R., Vetter C., Petrat F. M., Prodi–Schwab A., Lechner P., Hoffmann W., “A glass frit–sealed dye solar cell module with integrated series connections”, Sol. Energy Mater. & Sol. Cells, 90(11), 1680–91, 2006.
  • [49] Yamaguchi T., Tobe N., Matsumoto D., Nagai T., Arakawa H., “Highly efficient plastic–substrate dye–sensitized solar cells with validated conversion efficiency of 7.6 %”, Sol. Energy Mater. & Sol. Cells, 94(5), 812–16, 2010.
  • [50] Lee W. J., Ramasamy E., Lee D. Y., Song J. S., “Grid type dye– sensitized solar cell module with carbon counter electrode”, J. Photochem. Photobiol. A: Chem., 194(1), 27–30, 2008.
  • [51] Kang M. G., Park N.–G., Ryu K. S., Chang S. H., Kim K.–J., “A 4.2 % efficient flexible dye–sensitized TiO2 solar cells using stainless steel substrate”, Sol. Energy Mater. & Sol. Cells, 90(5), 574–81, 2006.
  • [52] Young C.–H., Chen Y.–L., Chen P.–C., “Heat insulation solar glass and application on energy efficiency buildings”, Energy and Build., 78, 66–78, 2014.
  • [53] Ohsaki H., Tachibana Y., Kadowaki, K. Hayashi Y., Suzuki K., “Bendable and temperable solar control glass”, J. of Non–Cryst. Solids, 218, 223–229, 1997.
  • [54] Hong M., Feng C., Xu Z., Zhang L., Zheng H., Wu G., “Performance study of a new type of transmissive concentrating system for solar photovoltaic glass curtain wall”, Energy Conv. and Manag., 201, 112167, 2019.
  • [55] Ballif C., Dicker J., Borchert D., Hofmann T., “Solar glass with industrial porous SiO2 antireflection coating: Measurements of photovoltaic module properties improvement and modeling of yearly energy yield gain”, Sol. Energy Mater. & Sol. Cells, 82(3), 331–344, 2004.
  • [56] Zhu H., Yu X., Rajamani R., Stelson K. A., “Active control of glass panels for reduction of sound transmission through windows”, Mechatronics, 14, 805–819, 2004.
  • [57] Hongsheng Z., Bing L., Hongpo H., Ziqiang L., Youlin S., “Optical properties of CeO2/Fe3O4 solar control glass coating”, Rare Metals, 25(6), 351–354, 2006.
  • [58] Weinhardt L. Blum M., Bär M., Heske C., Fuchs O., Umbach E., Denlinger J. D., Ramanathan K., Noufi R., “Chemical properties of the Cu(In, Ga)Se2/Mo/glass interfaces in thin film solar cells”, Thin Solid Films, 515(15), 6119–6122, 2007.
  • [59] Gall S., Becker C., Conrad E., Dogan P., Fenske F., Gorka B., Lee K.Y., Rau B., Ruske F., Rech B., “Polycrystalline silicon thin–film solar cells on glass”, Sol. Energy Mater. & Sol. Cells, 93(6–7), 1004–8, 2009.
  • [60] Tachan Z., Rühle, S. Zaban A., “Dye–sensitized solar tubes: A new solar cell design for efficient current collection and improved cell sealing”, Sol. Energy Mater. & Sol. Cells, 94, 317–322, 2010.
  • [61] Rosa–Clot M., Rosa–Clot P., Tina G. M., Scandura P. F., “Submerged photovoltaic solar panel: SP2”, Renew. Energy, 35(8), 1862–1865, 2010.
  • [62] Nagamedianova Z, Ramírez–García R. E., Flores–Arévalo S. V., Miki–Yoshida M., Arroyo–Ortega M., “Solar heat reflective glass by nano structured sol–gel multilayer coatings”, Opt. Mater., 33, 1999–2005, 2011.
  • [63] Dominguez A., Kleiss J., Luvall J. C., “Effects of solar photovoltaic panels on roof heat transfer”, Solar Energy, 85, 2244–2255, 2011.
  • [64] Sumitomo T., Huang H., Zhou L., Shimizu J., “Nanogrinding of multi–layered thin film amorphous Si solar panels”, Int. J. of Machine Tools & Manufac., 51, 797–805, 2011.
  • [65] Verma L. K., Sakhuja M., Son J., Danner A. J., Yang H., Zeng H. C., Bhatia C. S., “Self–cleaning and antireflective packaging glass for solar modules”, Renew. Energy, 36(9), 2489–2493, 2011.
  • [66] Rosa–Clot M., Rosa–Clot P., Tina G. M., “TESPI: Thermal electric solar panel ıntegration”, Solar Energy, 85(10), 2433–2442, 2011.
  • [67] Tina G. M., Rosa–Clot M., Rosa–Clot P., Scandura P. F., “Optical and thermal behavior of submerged photovoltaic solar panel: SP2”, Energy, 39(1), 17–26, 2012.
  • [68] Lee K., Kim D., Berger S., Kirchgeorg R., Schmuki P., “Front side illuminated dye–sensitized solar cells using anodic TiO2 mesoporous layers grown on FTO–glass”, Electrochem. Comm., 22, 157–161, 2012.
  • [69] Hee J. Y., Kumar L. V., Danner A. J., Yang H. and Bhatia C. S., “The effect of dust on transmission and self–cleaning property of solar panels”, Energy Procedia, 15, 421–427, 2012.
  • [70] Xin C., Peng C., Xu Y., Wu J., “A novel route to prepare weather resistant, durable antireflective films for solar glass”, Solar Energy, 93, 121–126, 2013.
  • [71] Lua Y., Zhang X., Huang J., Li J., Wei T., Lan P., Yang Y., Xu H., Song W., “Investigation on antireflection coatings for Al:ZnO in silicon thin–film solar cells”, Optik, 124, 3392–3395, 2013.
  • [72] Jelle B. J., “The challenge of removing snow downfall on photovoltaic solar cell roofs in order to maximize solar energy efficiency research opportunities for the future”, Energy and Build., 67, 334–351, 2013.
  • [73] Naumenko K., Eremeyev V. A., “A layer–wise theory for laminated glass and photovoltaic panels”, Composite Structures, 112, 283– 291, 2014.
  • [74] Young C.–H., Chen Y.–L., Chen P.–C., “Heat insulation solar glass and application on energy efficiency buildings”, Energy and Build., 78, 66–78, 2014.
  • [75] Cattaruzza E., Mardegan M., Pregnolato T., Ungaretti G., Aquilanti G., Quaranta A., Battaglin G., Trave E., “Ion exchange doping of solar cell cover glass for sun light down–shifting”, Sol. Energy Mater. & Sol. Cells, 130, 272–280, 2014.
  • [76] Yiannis T., “New designs of building integrated solar energy systems”, Energy Procedia, 57, 2186–2194, 2014.
  • [77] Pop S. C., Schulze R., Brophy B., Maghsoodi S., Yang Y. S., Abrams Z. R., Gonsalves P., “Development of an ion–barrier film on solar panel glass”, IEEE 42nd Photovoltaic Specialist Conference (PVSC), 2015, DOI: 10.1109/PVSC.2015.7356276.
  • [78] Womack G., Kaminski P. M., Walls J. M.. “High temperature stability of broadband anti–reflection coatings on soda lime glass for solar modules”, IEEE 42nd Photovoltaic Specialist Conference (PVSC), 2015, DOI: 10.1109/PVSC.2015.7356265.
  • [79] Gerthoffer A., Roux F., Emieux F., Faucherand P., Fournier H., Grenet L., Perraud S., “CIGS solar cells on flexible ultra–thin glass substrates: Characterization and bending test”, Thin Solid Films, 592, 99–104, 2015.
  • [80] Spasiano D., Marotta R., Malato S., Fernandez–Ibañez P., Di Somma I., “Solar photocatalysis: Materials, reactors, some commercial, and pre–industrialized applications. A comprehensive approach”, Appl. Catalysis B: Environ., 170–171, 90–123, 2015.
  • [81] Kawamoto H., Shibata T., “Electrostatic cleaning system for removal of sand from solar panels”, J. of Electrostatics, 73, 65–70, 2015.
  • [82] Mahadik D. B., Lakshmi R. V., Barshilia H. C. “High performance single layer nano–porous antireflection coatings on glass by sol–gel process for solar energy applications”, Sol. Energy Mater. & Sol. Cells, 140, 61–68, 2015.
  • [83] Wang J., Yin X., Qi J., Ma G., Liu X., “Medium–temperature solar collectors with all–glass solar evacuated tubes”, Energy Procedia, 70, 126–129, 2015.
  • [84] Humood M., Beheshti A., Meyer J. L., Polycarpou A., “Normal impact of sand particles with solar panel glass surfaces”, Tribology Int., 102, 237–248, 2016.
  • [85] Garcia J. A. M., Kassab L. R. P., Onmori R. K., Lima B. C., Gómez– Malagón R. A. and Gomes A. S. L., “Influence of gold nanoparticles on Eu3+ doped GeO2–Bi2O3 glasses covered silicon solar cell”, 31st Symposium on Microelectronics Technology and Devices (SBMicro), 2016.
  • [86] Vossen F. M., Aarts M. P. J., Debije M. G., “Visual performance of red luminescent solar concentrating windows in an office environment”, Energy and Build., 113, 123–132, 2016.
  • [87] Gupta A., Chauhan, Y. K., “Detailed performance analysis of realistic solar photovoltaic systems at extensive climatic conditions”, Energy, 116, 716–734, 2016.
  • [88] Plentz J., Andrä G., Pliewischkies T., Brückner U., Eisenhawer B., Falk F., “Amorphous silicon thin–film solar cells on glass fiber textiles”, Mater. Sci. and Eng. B, 204, 34–37, 2016.
  • [89] Barroso J. C. S., Barth N., Correia J. P. M., Ahzi S., Khaleel M. A., “A computational analysis of coupled thermal and electrical behavior of PV panels”, Sol. Energy Mater. & Sol. Cells, 148, 73– 86, 2016.
  • [90] Kumar A., Chaliyawala H., Siddhanta S., Barshilia H. C., “Broadband quasi–omnidirectional sub–wavelength nanoporous antireflecting surfaces on glass substrate for solar energy harvesting applications”, Sol. Energy Mater. & Sol. Cells, 145, 432–439, 2016.
  • [91] Zarcone R., Brocato M., Bernardoni P., Vincenzi D., “Building integrated photovoltaic system for a solar infrastructure: Liv–lib’ project”, Energy Procedia, 91, 887–896, 2016.
  • [92] Mainini A. G., Speroni A., Zani A., Poli T., “The effect of water spray systems on thermal and solar performance of an ETFE panel for building envelope”, Procedia Eng., 155, 352–360, 2016.
  • [93] Nayshevsky I., Xu Q., Barahman G., Lyons A., “Anti–reflective and anti–soiling properties of a KleenboostTM, a superhydrophobic nano–textured coating for solar glass”, IEEE 44th Photovoltaic Specialist Conference Photovoltaic Specialist Conference (PVSC), 2017.
  • [94] Isbilir K., Maniscalco B., Gottschalg, R. Walls J. M., “Test methods for hydrophobic coatings on solar cover glass”, IEEE 44th Photovoltaic Specialist Conference (PVSC), 2017.
  • [95] Jiang J., Li C., He Y., Wei J. and Li L., “Pb–free silver pastes with SnO–B2O3 glass frits for crystalline silicon solar cell”, 18th International Conference on Electronic Packaging Technology (ICEPT), 2017.
  • [96] Humood M., Beheshti A., Andreas A. A., “Surface reliability of annealed and tempered solar protective glasses: Indentation and scratch behavior”, Solar Energy, 142, 13–25, 2017.
  • [97] Maurer C., Cappel C., Kuhn T. E., “Progress in building–integrated solar thermal systems”, Solar Energy, 154, 158–186, 2017.
  • [98] Gholami A., Alemrajabi A. A., Saboonchi A., “Experimental study of self–cleaning property of titanium dioxide and nanospray coatings in solar applications”, Solar Energy, 157, 559–565, 2017.
  • [99] Brew K. W., McLeod S. M., Garner S. M., Agrawal R., “Improving efficiencies of Cu2ZnSnS4 nanoparticle–based solar cells on flexible glass substrates”, Thin Solid Films, 642, 110–116, 2017.
  • [100] Lee T. D., Ebong A. U., “A review of thin film solar cell technologies and challenges”, Renew. and Sustain. Energy Rev., 70, 1286–1297, 2017.
  • [101] Baumgärtner L., Krasovsky R. A., Stopper J., von Grabe J., “Evaluation of a solar thermal glass façade with adjustable transparency in cold and hot climates”, Energy Procedia, 122, 211– 216, 2017.
  • [102] Praveen J., VijayaRamaraju V., “Materials for optimizing efficiencies of solar photovoltaic panels”, Materials Today: Proceedings, 4, 5233–5238, 2017.
  • [103] Sutha S., Suresh S., Raj B., Ravi K. R., “Transparent alumina based superhydrophobic self–cleaning coatings for solar cell cover glass applications”, Sol. Energy Mater. & Sol. Cells, 165, 128–137, 2017.
  • [104] Moutinho H. R., Jiang C.–S., To B., Perkins C., Muller M., Al– Jassim M. M., Simpson L., “Adhesion mechanisms on solar glass: Effects of relative humidity, surface roughness, and particle shape and size”, Sol. Energy Mater. & Sol. Cells, 172, 145–153, 2017.
  • [105] Omara Z. M., Abdullah A. S., Kabeel A. E., Essa F. A., “The cooling techniques of the solar stills’ glass covers–A review”, Renew. and Sustain. Energy Rev., 78, 176–193, 2017.
  • [106] Moutinho H. R., To B., Jiang C.–S., Engtrakul C., Einhorn A., Sellinger A., Yemam H. A., Al–Jassim M. M., Simpson L., “Effects of solar–glass coatings on the adhesion forces related to soiling”, IEEE 7 th World Conference on Photovoltaic Energy Conversion (WCPEC), 2018.
  • [107] Andenæs E., Jelle B. P., Ramlo K., Kolås T., Selj J. K., Foss S. E., “The influence of snow and ice coverage on the energy generation from photovoltaic solar cells”, Solar Energy, 159, 318– 328, 2018.
  • [108] Chen E. Y.–T., Ma L., Yue Y., Guo B., Liang H., “Measurement of dust sweeping force for cleaning solar panels”, Sol. Energy Mater. & Sol. Cells, 179, 247–253, 2018.
  • [109] Grosjean A., Soum–Glaudec A., Neveu P., Thomas L., “Comprehensive simulation and optimization of porous SiO2 anti– reflective coating to improve glass solar transmittance for solar energy applications”, Sol. Energy Mater. & Sol. Cells, 182, 166– 177, 2018.
  • [110] Ge T. S., Wang R. Z., Xu Z.Y., Pan Q. W., Du S., Chen X. M., Ma T., Wu X. N., Sun X. L., Chen J. F., “Solar heating and cooling: Present and future development”, Renew. Energy, 126, 1126–1140, 2018.
  • [111] Settino J., Sant T., Micallef C., Farrugia M., Staines C. S., Licari J., Micallef A., “Overview of solar technologies for electricity, heating and cooling production”, Renew. and Sustain. Energy Rev., 90, 892–909, 2018.
  • [112] Taniguchi M. M., Zanuto V. S. P. N., Malacarne L. C., Astrath N. G. C., Marconi J. D., Belançon M. P., “Glass engineering to enhance Si solar cells: A case study of Pr3+–Yb3+ codoped tellurite– tungstate as spectral converter”, J. of Non–Cryst. Solids, 526, 119717, 2019.
  • [113] Nur I. M., Norasikin A. L., Norani M. M., Mohd A. I., Mohd A. M. T., Suhaila S., Azami Z., Kamaruzzaman S., “Environmental performance of window–integrated systems using dye-sensitised solar module technology in Malaysia”, Solar Energy, 187, 379–392, 2019.
  • [114] Li Y., Sun Y., Zhang Y., “Luminescent solar concentrators performing under different light conditions”, Solar Energy, 188, 1248–1255, 2019.
  • [115] Penga J., Curcija D. C., Thanachareonkit A., Lee E. S., Goudey H., Selkowitz S. E., “Study on the overall energy performance of a novel c–Si based semitransparent solar photovoltaic window”, Appl. Energy, 242, 854–872, 2019.
  • [116] Neugebohrn N., Gehrke K., Brucke K., Götz M., Vehse M., “Multifunctional metal oxide electrodes: Colour for thin film solar cells”, Thin Solid Films, 685, 131–135, 2019.
  • [117] Womack G., Isbilir K., Lisco F., Durand G., Taylor A., Walls J. M., “The performance and durability of single–layer sol–gel anti– reflection coatings applied to solar module cover glass”, Surface & Coatings Techno., 358, 76–83, 2019.
  • [118] Pagnanelli F., Moscardini E., Altimari P., Padoan F. C. S. M., Atia T. A., Beolchini F., Amato A., Toro L., “Solvent versus thermal treatment for glass recovery from end of life photovoltaic panels: Environmental and economic assessment”, J. of Environ. Management, 248, 109313, 2019.
  • [119] Liu H., Wang X., Wu D., Ji S., “Fabrication and applications of dual–responsive microencapsulated phase change material with enhanced solar energy–storage and solar photocatalytic effectiveness”, Sol. Energy Mater. & Sol. Cells, 193, 184–197, 2019.
  • [120] Dhavalkumar N. J., Atchuta S. R., Lokeswara R. Y., Naveen K. A., Sakthivel S., “Superchydrophilic broadband anti–reflective coating with high weather stability for solar and optical applications”, Sol. Energy Mater. & Sol. Cells, 200, 110023, 2019.
  • [121] Song B.–P., Zhang M.–Y., Fanb Y., Jiang L., Kang J., Gou T.–T., Zhang C.–L., Yang N., Zhang G.–J., Zhou X., “Recycling experimental investigation on end of life photovoltaic panels by application of high voltage fragmentation”, Waste Manag., 101, 180–187, 2020.
  • [122] Parthiban A., Reddy K. S., Pesala B., Mallick T. K., “Effects of operational and environmental parameters on the performance of a solar photovoltaic–thermal collector”, Energy Conv. and Manag., 205, 112428, 2020.
  • [123] Chi F., Wang R., Li G., Xua L., Wang Y., Penga C., “Integration of sun–tracking shading panels into window system towards maximum energy saving and non–glare daylighting”, Appl. Energy, 260, 114304, 2020.
  • [124] Anctila A., Lee E., Lunt R. R., “Net energy and cost benefit of transparent organic solar cells in building integrated applications”, Appl. Energy, 261, 114429, 2020.
  • [125] Gürtürk M., Benli H., Koçdemir Ertürk N., “Determination of the effects of temperature changes on solar glass used in photovoltaic modules”, Renew. Energy, 145, 711–724, 2020.
  • [126] Özden, T., Karaveli, A., Akınıoğlu, B., “Comparison of the Models of Solar PV Performance Calculations for Ankara–Middle Anatolia”, Euro. J. of Sci. and Techn., (18), 54–60, 2020.
  • [127] Karasu B., Demirel İ., Aydın S., Dalkıran M., Lik B., “Past and Present Approaches to Borosilicate Glasses”, El–Cezeri J. of Sci. and Eng. (ECJSE), 7(2), 940–969, 2020.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç