Hidrofoilli Teknelerde Kullanılan Su Altı Kanat Yapılarındaki SerbestYüzey Etkileşimlerinin Sınır Elemanları Yöntemi ile İncelenmesi

Hidrofoilli tekneler, ek kaldırma kuvveti oluşturmak amacıyla serbest yüzey altında ilerleyen kanatlar kullanır. Tekne yüzeyinin biruzantısı olan kanatlar tarafından oluşturulan kaldırma kuvveti, tekneyi yukarı yönde iterek deplasman hacminin -dolayısıyla- direncinazalmasını sağlarlar. Serbest yüzeyin oldukça yakınında çalışan bu tarz kanat yapılarının performansının belirlenmesinde, serbestyüzeyle girecekleri etkileşimlerin de rol oynaması beklenir. Bu çalışmada, su altında ilerleyen iki boyutlu bir NACA 0012 kanatkesitinin performansı ve serbest yüzey etkileşimleri sayısal olarak incelenmiştir. Bu amaçla, serbest yüzeyden bir kort boyu mesafedebulunan kesitli kanat etrafındaki akım, geniş bir Froude sayısı aralığında potansiyel akım temelli iteratif sınır elemanları yöntemikullanarak modellenmiştir. Kullanılan yöntemin matematiksel ayrıntıları detaylı bir biçimde sunulmuştur. Çalışma sonucunda, serbestyüzey yakınında çalışmanın kanat kesiti üzerinde oluşan kaldırma ve direnç kuvvetlerini önemli ölçüde etkilediği gözlenmiş ve bukuvvetlerin değişimi Froude sayısına bağlı olarak incelenmiştir. Ayrıca, kanat tarafından serbest yüzey deformasyonları oluşturulduğubelirlenmiş, oluşan dalga genliğinin Froude Sayısına bağlı olarak arttığı görülmüştür.

Evaluation of Free Surface Interaction of a Submerged Hydrofoil using Boundary Element Method

Hydrofoil crafts use submerged foils to gain additional lift force. Lift produced by the submerged foils push the hull upwards and letthe drag of the body decrease by lowering the displacement. Free surface interactions effects the performance of the foils, which aretravelling close to the surface. In this study, performance and free surface deformations of a two dimensional NACA0012 foil section,which is one chord length beneath the free surface is investigated numerically. Potential flow based iterative boundary elementmethod is adopted, to predict the flow field. Mathematical formulation and numerical implementation of the present method ispresented in detail. Numerical results reveals that, free surface has a significant impact on the lift force and wave drag of the foil.Variation of these forces with Froude number is presented. Besides, it is observed that, foil generates deformations on the free surfaceand the wave amplitudes increase with Froude Number.

___

  • Abbott, I. H. and Von Doenhoff, (1959). A. E.: Theory of Wing Sections, Dover Publications, New York
  • Ali, A., Karim, M. (2013). Numerical Study Of Free Surface Effect On The Flow Around Shallowly Submerged Hydrofoils. Proceedings of MARTEC 2010 The International Conference on Marine Technology, 11-12 December 2010, BUET, Dhaka, Bangladesh
  • Hoque, A.,Karim, M., Rahman, A.,( 2017). Simulation of Water Wave Generated by Shallowly Submerged Asymmetric Hydrofoil, Procedia Engineering, Volume 194, pp 38-43
  • Huang, L., Huang, P. G., LeBeau, R. P. and Hauser, T. (2004) Numerical Study of Blowing and Suction Control Mechanism on NACA0012 Airfoil, Journal of Aircraft, vol.41 (5)
  • Bakirci, M. (2020). Kama Şekilli Kanat Üzerindeki Süpersonik Akışı Çözmek için Sayısal Bir Algoritma. European Journal of Science and Technology, (18), pp. 934–942. doi: 10.31590/ejosat.706738.
  • https://dergipark.org.tr/tr/pub/ejosat/issue/52599/706738 Bal, S., (1999). A potential based panel method for 2-D hydrofoils, Ocean Engineering, Vol. 26, pp. 343-361.
  • Bal, S., Kinnas, S. A. and Lee, Hee.(2001). Numerical Analysis of 2-D and 3-D Cavitating Hydrofoils Under a Free Surface, Journal of Ship Research, Vol. 45, No:1, pp. 34-49.
  • Bal, S., (2007). High-speed submerged and surface piercing cavitating hydrofoils, including tandem case, Ocean Engineering, Volume 34, Issues 14–15, Pages 1935-1946
  • Bal, S., (2011). The effect of finite depth on 2D and 3D cavitating hydrofoils, J Mar Sci Technology, Vol. 16, No: 2, pp.129-142.
  • Chen, S.L., Yang, S., & Ma, Q. (2011). An Experimental Study on Hydrodynamic Characteristics of Gliding-Hydrofoil Craft, Journal of Marine Science and Technology, Vol. 19, No. 1, pp. 89-96
  • Çakıcı, F. ve Kınacı, Ö.K. (2012). Yüksek Froude Sayılarında Çalışan Hidrofoiller Üzerinde Serbest Su Yüzeyi Etkisi, Gemi İnşaatı ve Deniz Teknolojisi Teknik Kongresi 2012 Bildiriler Kitabı, 13–14 Aralık 2012, TMMOB, Gemi Mühendisleri Odası, İstanbul 183-192.
  • Drela, M., (1989) XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils, Low Reynolds Number Aerodynamics, Notre Dame, Indiana, June 5-7.
  • Duncan, J. H., (1983). The breaking and non-breaking wave resistance of a two-dimensional hydrofoil, J. Fluid Mech., Vol. 126, pp. 507-520.
  • Eleni, D. C., Athanasios, T. I. and Dionissios, P. M.,(2012). Evaluation of turbulence models for the simulation of the flow over a National Advisory Committee for Aeronautics (NACA 0012) airfoil, Journal of Mechanical Engineering Research, Vol. 4, No:3, pp. 100-111.
  • Ganesh Ram, R. K., Cooper, Y. N., Bhatia, V., Karthikeyan, R., & Periasamy, C. (2014). Design Optimization and Analysis of NACA 0012 Airfoil Using Computational Fluid Dynamics and Genetic Algorithm. Applied Mechanics and Materials, 664, 111–116.
  • https://doi.org/10.4028/www.scientific.net/amm.664.111 Ghassemi, H., Iranmanesh, M. and Ardeshir, A.,(2010). Simulation of Free Surface Wave Pattern Due To The Moving Bodies, Iranian Journal of Science & Technology, Transaction B: Engineering, Vol. 34, pp. 117-134.
  • Karaalioğlu, M , Bal, Ş . (2015). Numerical Investigation Cavitation Buckets for Hydrofoil Parametrically. Turkish Journal of Maritime and Marine Sciences , 1 (2) , 89-101. https://dergipark.org.tr/tr/pub/trjmms/issue/40138/477489
  • Karaalioğlu, M , Bal, Ş . (2017). Some Remarks on the Three Dimensionality of Hydrofoil Cavitation. Turkish Journal of Maritime and Marine Sciences , 3 (2) , 113-120 https://dergipark.org.tr/tr/pub/trjmms/issue/40149/477568
  • Karim, Md. M. and Ahammed, M. S., (2012). Numerical study of periodic cavitating flow around NACA 0012 hydrofoil. Ocean Engineering, Vol. 55, pp. 81-87.
  • Karim, Md. M., Prasad, B. and Rahman, N.,(2014). Numerical simulation of free surface water wave for the flow around NACA 0015 hydrofoil using the volume of fluid (VOF) method, Ocean Engineering, Vol. 78, pp. 89-94.
  • Katsikadelis, J. T. (2002).Boundary Elements: Theory and Applications, Elsevier, New York,
  • Körpe, D. S., Kanat, Ö. Ö. and Oktay, T. (2019). Başlangıç y plus Değerinin Etkileri: γ-Reθ SST Türbülans Modeli Kullanılarak 3D NACA 4412 Kanadının Sayısal Analizi. European Journal of Science and Technology, (17), pp. 692–702. doi: 10.31590/ejosat.631135. https://dergipark.org.tr/tr/pub/ejosat/issue/48495/631135
  • Lee, T. M., Park, I. R., Chun, H. H. and Lee, S. J., (2000). Effect of free surface and strut on fins attached to a strut, Ocean Engineering, Vol. 28, pp. 159-177.
  • Morgado, J., Vizinho, R., Silvestre, M.A.R., Páscoa, J.C. (2016) XFOIL vs CFD performance predictions for high lift low Reynolds number airfoils, Aerospace Science and Technology, Volume 52, , pp 207-214,
  • Newman, J. N.,(1977). Marine Hydrodynamics. MIT Press, Cambridge,
  • Nguyen, D.H. and Lee, S. (2018 ) Investigation on the Accuracy of the TNO Model Using RANS CFD and XFOIL Inputs for Airfoil Trailing Edge Noise Predictions, AIAA/CEAS Aeroacoustics Conference June 25-29, 2018, Atlanta, Georgia
  • Ni, Z., Dhanak, M., Su, T.C.,(2019). Performance of a slotted hydrofoil operating close to a free surface over a range of angles of attack, Ocean Engineering, vol 188, pp. 106296
  • Oktay, T. and Kanat, Ö. Ö. (2019). NACA 4412 Kanadı Üzerinde Bir Emme Kanalı Tasarlanmasının Aerodinamik Etkileri. European Journal of Science and Technology, (17), pp. 1001–1007. doi: 10.31590/ejosat.651523. https://dergipark.org.tr/tr/pub/ejosat/issue/48495/651523
  • Ömer Kemal Kinaci, (2015). A Numerical Parametric Study on Hydrofoil Interaction in Tandem, Int. J. Nav. Archit. Ocean Eng. 7:25-40 http://dx.doi.org/10.1515/ijnaoe-2015-0003
  • Raj,J. (2017). CFD analysis of flow characteristics of NACA0012 airfoil using SU2, Journal of Mechanical and Aeronautical Engineering Research Volume 1 (3), p. 25-28
  • Sharma, S. and Clement, S. (2014) CFD Simulation of the Flow Characteristics of NACA 0012, NACA 6409, and DHMTU Airfoils in Ground Effect, ASME Fluids Engineering Division Summer Meeting August 3–7, 2014 Chicago, Illinois, USA
  • Tarafder, Md. S. and Suzuki, K., (2007). Computation of wavemaking resistance of a catamaran in deep water using a potential-based panel method, Ocean Engineering, Vol. 34, pp. 1892-1900.
  • Tarafder, Md. S., Khalil, G. Md. and Islam, R. M., (2009). Analysis of potential flow around two-dimensional hydrofoil by source based lower and higher order panel methods, The Institution of Engineers Malaysia, Vol. 71, No:2, pp. 13-21.
  • Tarafder, M. S., Saha, K. G. and Mehedi, T. S.(2010). Analysis of potential flow around three-dimensional hydrofoils by combined source and dipole based panel methods, Journal of Marine Science and Technology, Vol. 18, No: 3, pp. 376- 384.
  • Uslu, Y. and Bal, S., (2008). Numerical Prediction of Wave Drag of 2-D and 3-D Bodies under or on a Free Surface, Turkish J. Eng. Env. Sci., Vol. 32, pp. 177-188.
  • Wehausen, J.V. and Laitone, E. V.,( 1960). Surface waves, Handbuch der Physih,
  • Wu, P. C. and Chen, J. H.( 2016). Numerical study on cavitating flow due to a hydrofoil near a free surface, Journal of Ocean Engineering and Science, Volume 1 (3), pp. 238-245.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç