Bağcılıkta gen transferi çalışmaları

Genetik mühendisliği sayesinde, bağcılık ve şarapçılık sektöründe de mevcut kabul görmüş çeşitlerin temel karakterlerini değiştirmeden istenilmeyen bir veya birkaç özelliğinin değiştirilmesi mttmkun olmaktadır, İlk olarak V. rupesiris türünde başlayan gen aktarım çalışmaları, günümüzde V. vinifera ve diğer türlerde de haşarılı-bir şekilde yapılmaktadır. Yapılan çalışmalar sonucunda asma anaç ve çeşitlerine biyotik (virüs, bakteri ve fungal patojenler) ve abiyotik (su stresi, dona dayanıklılık) stres şartlatma karşı dayanıklılığı artıran genlerin yanısıra, kalite (şeker birikimi ve taşımını, oksidatif karama) ve bazı meyve özelliklerini (renk, çekirdeksizlik) kontrol eden birçok gen aktarılmıştır, Böylece bu çalışmalar sonucunda 42 adet gen aktarılmış (transgenik) asmanın yetiştiriciliğine izin verilmiştir. Moleküler asma ıslahında sağlanan önemli ilerlemelere rağmen, mevcut transformasyon sistemlerinde başarıyı etkileyen bir takım sorunlar mevcuttur. Ancak, moleküler asma ıslahı çalışmaları henüz başlangıç aşamasında değerlendirilmektedir. İlerleyen yıllarda bu sorunların çözülmesi ve yeni genlerin de izole edilmesiyle bu alanda önemli gelişmeler sağlanacağı umulmaktadır. Bu sayede transgenik asmaların dünya bağcılık ve şarapçılık sektöründe önemli yer tutacağı kanaatindeyiz.

Gene transformation studies in vticulture

A few undesired characters existing in grapevine cultivars can be changed without removing their basic characters by use of genetic engineering. The first gene transformation studies were made on V. rupestris. Then, the studies have successfully continued on the V. vinifera and other Vitis species in recently. Several genes controlling the hardiness of biotic (viral, bacterial and fungal pathogens), abiotic (water, cold) stress conditions, quality factors (sugar accumulation, transportation, oxidative browning) and some berry characters (color, seedlessness) have been put into grapevine cultivars and rootstocks at the end of these studies. Thus, 42 transgenic grapevines have been allowed to growing. Although molecular grapevine breeding have been importantly improved, there are still some problems in terms of success on current transformation systems. However, it has been determined that molecular grapevine breeding studies are the first step. It is expected that marked improvements will be achieved in the future for overcoming these problems and isolation of new genes. Thus, transgenic grapevine genotypes will have an important role on global viticulture and wine industry.

___

  • Ağaoğlu, Y.S., Marasah, B. ve Ergül, A., 1998. Asma Islahında Son Gelişmeler. 4. Bağcılık Sempozyumu, (9-17), 20-23 Ekim, Yalova.
  • Anonymous, 2002. Transgenic Plants in Viticulture and Fruit Growing. Genetic Engineering Newsletter, Special Issue 9/10 October 2002.
  • Anonymous, 2003. Freeze Damage and Protection of Horticultural Species. The Western Association of Agricultural Experiment Station Directors, Annual Meeting., SAES-422.
  • Boss, P.K., Sensi, E., Hua, C, Davies, C. aid Thomas, M.R., 2002. Cloning and Characterization, of Grapevine (Vitis vinifera L.) MADS-box Genes Expressed During Inflorescence and Berry Development. Plant Science 162:887-895.
  • Buck, S., 1999. Transformationsstudien an V. vinifera cv. Seyval Blanc. Hohenheim Univ. 1999;133p.
  • Colova-Tsolova, V. and Lu, 1, 2001. Genetically Engineered Grape for Seedless and Stres Tolerance. ASEV 52nd annual Meeting, SanDiego, California, June 2001; 24-25.
  • Davies, C. and Robinson, S.P., 1996. Sugar Accumulation in Grape Berries. Cloning Two Putative Vacuolar Invertase cDNAs and Their Expression in Grapevine Tissues. Plant Physiology, lll(l):275-283.
  • Gall, O., Torregrosa, L., Danglot, Y., Candresse, T. and Bouquet, A., 1994. Agrobacteriurn-mediated Genetic Transformation of Grapevine Somatic Embryos and Regeneration of Transgenic Plants Expressing the Coat Protein of Grapevine Chrome Mosaic nepovirus (GCMV). Plant Sci,, 102(2): 161-170.
  • Gianessi, L.P., Stivers, C.S., Sankula, S. and Carpenter, J.E., 2002. Virus Resistant Papaya. Bacterial Resistant Grape. Herbicide Tolerant Strawberry, www.ncfap.org/40case3tudies.htm.
  • Iocco, P., Franks, T. and Thomas, M.R., 2001. Genetic Transformation of Major Wine Grape Cultivars of Vitis vinifera L. Transgenic Res., 10(2):105-112.
  • Kaygısız, H., 2001. Genetik Mühendisliğinin Gerçekleri ve Hedefleri, Hasat 190: 12-15.
  • Kikkert, J.R., Hebert-Soule, D., Wallace, P.G., Striem, M.J. and Reisch, B.I., 1996a. Transgenic Plantlets of Chancellor Grapevine (Witiş sp.) from Biolistic Transformation of Embryogenic Cell Suspensions. Plant Cell Rep., 15:311-316.
  • Kikkert, J.R., Ali, G.S., Striern, M.J., Martens, M.H., Wallace, P.G., Molino, L. and Reisch, B.I., 1996b. Genetic Engineering of Grapevine (Vitis sp.) for Enhancement of Disease Resistance. 3rd International Symposium on In Vitro Culture and Horticultural Breeding.
  • Kobayashi, S., Ishimaru, M., Ding, C.K., Yakushiji, H. and Goto, N., 2001. Comparison of UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT) Gene Sequences Between White Grapes (Vitis vinifera) and Their Sports with Red Skin. Plant Sci., 160(3):543-550.
  • Krastanova, S., Perrin, M., Barbier. P., Demangeat, G., Cornuet, P., Bardonnet, N., Otten, 1L, Pjnck, L. and Walter, B., 1995. Transformation of Grapevine Rootstocks with The Coat Protein Gene of Grapevine Fanleaf Nepovirus. Plant Cell Rep., 14:550-554.
  • Loulakakis, K.A.., 1997. Genomic Organization and Expression of Osmotin-like gene in Vitis vinifera L. Vitis, 36(3):157-158.
  • Martinelli, L., 1995. Riflessioni Sula Prospettiva di Introdurre lie Tecniche Molecolari nel Miglioramento Genetico della Vite. Frutticoltura, 5:71-74.
  • Martinelli, L, 1997. II Miglioramento Genetico della Vite: Modeme Tecnoiogie per una Pianta Antica. Bio. Tec, 5:24-28.
  • Mauro, M.C., Toutain, S., Walter, B., Pinck, L., Otten, L., Coutos-thevenot, P., Delooire, A. and Barbier, P, 1995. High Efficiency Regeneration of Grapevine Plants Transformed with GFLV Coat Protein Gene. Plant Sci., 112:97-106.
  • Meredith, C.P. and Reisch, B.I., 1996. The New Tools of Grapevine Genetics. Fourth International Symposium on Cool Climate Viticulture and Enology, 16-20 July, New York, USA.
  • Mezzetti, B., Pandolfini, T., Navacchi, O. and Landi, L., 2002. Genetic Transformation of V. vinifera via Organogenesis. BMC Biotechnology, 2:18-28.
  • Mullins, M.G., Tang, F.C.A. and Facciotti, D., 1990. Agrobacterium-mediated Genetic Transformation of Grapevines: Transgenic Plants of Vitis rupestris Scheele and Buds of Vitis vinifera L. Bio/Technology 8:1041-1045.
  • Nakano, M., Hoshino, Y. and Mü, M., 1994. Regeneration of Transgenic Plants of Grapevine (Vitis Vinifera L.) via Agrobacterium rhizogenes-medi&led Transformation of Embryogenic Calli. J. Exp. Bot. 45:649-656.
  • Perl, A., Lotan., L, Willmitzer, L. and Holland, D., 1994. Establishment of Transformation System for Vitis vinifera: Transgenic Grape Plants Overexpressing a Yeast Derived Invertase in the Ripening Berries. 75th General Assembly of the International Vine Office (O.1.V), Aspects; Botanique de l'application des Nouvelles Techniques et de Biotechnologies (transfer de genes) la vigne., 1-9.
  • Robinson, S.P., Thomas, M., Scott, N.S., Dry, I., Davies, C, Frank, T., Boss, P., Hoj, P.B. and Heeswijck, R. van, 1999. Application of Gene Technology in Viticulture. The Australian Wine Research Inst, 1999: 134-138.
  • Sağıroğlu, A.K., 1999. Genedk Mühendisliği, Bilim ve Teknik, 378:34-41.
  • Scorza, R., Cordts, J.M., Ramming, D.W. and Emershad, R.L., 1995. Transformation of Grape (Vitis vinifera L.) Zygotic-derived Somatic Embryos and Regeneration of Transgenic Plants. Plant Cell Rep. 14:589-592.
  • Scorza, R., Cordts, J.M., Gray, D.I, Gonsalves, D., Emershad, R.L. and Ramming, D.W., 1996. Producing Transgenic Thompson Seedless Grape (V. vinifera L.) Plants. Jor. Amer. Soc. Hort. Sci., 121(4):616-619.
  • Spielmann, A., Krastanova, S.:, Dovet-orhant, V. and Gugerli, P., 2000. Analysis of Transgenic Grapevine (V. rupestris) and Nicotiana benthumiana Plants Expressing an Arabic Mosaic virus Coat Protein Gene. Plant Science, 156:235-244.
  • Thomas, M.R., Iocco, P. and Frank, T., 2000. Transgenic Grapevines: Status and Future. ActaHort, 528: 279-287).
  • Vivier, M.A. and Pretorius, 1.., 2002. Genetically Tailored Grapevines for the Wine Industry. TRENDS in Biotechnology, 20(ll):472-478.
  • Yamamoto. T., Iketani, H., Ieki, H,5 Nishizawa, Y., Notsukaa, K., Hibi, T., Hayashi, T. and Matsuta, N., 2000. Transgenis Grapevine Plants EJxpressing a Rice Chitinase with Enhanced Resistance to Fungal Pathogens. Plant Cell reports 19:639-646.