Koç katımının kandaki malondialdehit ve bazı antioksidanlar üzerine etkileri

Bu çalışmada koç katımı öncesi, esnası ve sonrasında 6 koçta (2 Sakız, 2 Akkaraman ve 2 Ost-friz) kan malondialdehit (MDA) ve glutatyon (GSH) düzeyleri ile glutatyon peroksidaz (GSH-Px) ve katalaz (CAT) aktivitelerinin incelenmesi amaçlandı. Koç katımından 15 gün önce, koç katımı sırasında ve koç katımından 15 gün sonra v. jugularis yoluyla kan örnekleri alınarak plazma MDA düzeyleri, eritrosit GSH düzeyleri, GSH-Px ve CAT aktiviteleri ölçüldü. Koç katımı öncesi, esnası ve sonrasında antioksidan parametrelerinde istatistiksel açıdan önemli fark bulunmadı. Bununla birlikte, koç katımı esnasında plazma MDA düzeyinde istatistiksel olarak önemli olmayan bir artış saptandı. Sonuç olarak, koç katımının kandaki MDA ve ölçülen antioksidan parametreleri üzerine anlamlı bir etkisinin olmadığı saptandı.

The effects of mating in rams on blood malondialdehyde and some antioxidants

The aim of the study was to investigate the malondialdehyde (MDA), glutathione (GSH) levels and glutathione peroxidase (GSH-Px), catalase (CAT) activities in the blood on pre-, during and post-mating days in rams (2 Chios, 2 Awassi and 2 Ost-Friz). Blood samples were collected from the jugular vein on 15 day earlier, on the day of mating and 15th day after mating. The MDA level in the plasma, GSH level and GSH-Px, CAT activities in the erythrocytes were measured. No statistically significant difference was found for antioxidant parameters measured on pre-, during and post-mating days. However, MDA levels were slightly increased during mating. In conclusion, it was found that mating in rams had no influence on blood MDA level and the antioxidant parameters measured herein.

___

  • Aebi H., 1984. Catalase in vitro. Methods Enzymol, 105, 121-126.
  • Akkuş İ., 1995. Serbest radikaller ve fizyopatolojik etkileri, 32-37, Mimoza Yay. Konya.
  • Alonso-Alvarez C., Bertrand S., Faivre B., Chastel O., Sorci G., 2007. Testosterone and oxidative stress: the oxidation handicap hypothesis. Proc Biol Sci, 274, 819-25.
  • Aydilek N., Aksakal M., Karakılçık AZ., 2004. Effects of testosterone and vitamin E on the antioxidant system in rabbit testis. Andrologia, 36, 277-281.
  • Beutler E., Duron O., Kelly BM., 1963. Improved method for the determination of blood glutathione. J Lab Clin Med, 61, 882-888.
  • Beutler E., 1975. Red cell metabolism. In: A manual of biochemical methods. Beutler E (ed), New York: Grunef and Strottan; 67-69.
  • Buchanan KL., Evans MR., Goldsmith AR., Bryant DM., Rowe LV., 2001. Testosterone influences basal metabolic rate in male house sparrows: a new cost of dominance signalling? Proc R Soc B, 268, 1337–1344.
  • Chainy GB., Samantaray S., Samanta L., 1997. Testosterone-induced changes in testicular antioxidant system. Andrologia, 29, 343-349.
  • Cheeseman KH., Slater TF., 1993. An introduction to free radical biochemistry. Br Med Bull, 49, 81- 493.
  • Comporti M., 1989. Three models of free radicalinduced cell injury. Chem Biol Interact, 72, 1-56.
  • Fairbanks VF., Klee GG., 1986. Biochemical aspects of hematology. In: Tietz NW (Ed.): Textbook of clinical chemistry. WB Saunders Company, Philadelphia, 1532-1534.
  • Finkel T., Holbrook NJ., 2000. Oxidants, oxidative stress and the biology of ageing. Nature. 408, 239-247.
  • Fryburg DA., Weltman A., Jahn LA., Weltman JY., Samojlik E., Hintz RL., Veldhuis JD., 1997. Shortterm modulation of the androgen milieu alters pulsatile, but not exercise- or growth hormone (GH)-releasing hormone-stimulated GH secretion in healthy men: impact of gonadal steroid and GH secretory changes on metabolic outcomes. J Clin Endocrinol Metab, 82, 3710–3719.
  • Gomes WR., Joyce MC., 1975. Seasonal changes in serum testosterone in adult rams. J Anim Sci, 41, 1373-1375.
  • Klapcinska B., Jagsz S., Sadowska-Krepa E., Gorski J., Kempa K., Langfort J., 2008. Effects of castration and testosterone replacement on the antioxidant defense system in rat lenf ventricle. J Physiol Sci, 58, 173-177.
  • Massafra C., Gioia D., De Felice C., Picciolini E., De Leo V., Bonifazi M., Bernabei A., 2000. Effects of estrogens and androgens on erythrocyte antioxidant superoxide dismutase, catalase and glutathione peroxidase activities during the menstrual cycle. J Endocrinol, 167, 447–452.
  • Miller JK., Brzezinska-Slebodzinska E., 1993. Oxidative stress, antioxidants and animal function. J Dairy Sci, 76, 2812-2823.
  • Mooradian AD., 1993. Antioxidant properties of steroids. J Steroid Biochem Mol Biol, 45, 509- 511.
  • Pansarasa O., D'Antona G., Gualea MR., Marzani B., Pellegrino MA., Marzatico F., 2002. Oxidative stress: effects of mild endurance training and testosterone treatment on rat gastrocnemius muscle. Eur J Appl Physiol, 87, 550–555.
  • Pereira B., Costa-Rosa LF., Bechara EJ., Newsholme P., Curi R., 1998. Changes in the TBARs content and superoxide dismutase, catalase and glutathione peroxidase activities in the lymphoid organs and skeletal muscles of adrenodemedullated rats. Braz J Med Biol Res, 31, 827-833.
  • Placer ZA., Cushman LL., Johnson BC., 1966. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem, 16, 359-364.
  • Prasad S., Kalra N., Shukla Y., 2006. Moduatory effects of diallyl sulfide against testosterone-induced oxidative stres in Swiss albino mice. Asian J Androl, 8, 719-723.
  • Prasad S., Kalra N., Singh M., Shukla Y., 2008. Protective effects of lupeol and mango extract against androgen induced oxidative stres in Swiss albino mice. Asian J Androl, 10, 313-318.
  • Ripple MO., Henry WF., Rago RP., Wilding G., 1997. Prooxidant-antioxidant shift induced by androgen treatment of human prostate carcinoma cells. J Natl Cancer Ist, 89, 40-48.
  • Stahl W., Sies H., 1997. Antioxidant defense: vitamins E and C and carotenoids. Diabetes, 46, 14-18.
  • Sullivan JC., Sasser JM., Pollock JS., 2007. Sexual dimorphism in oxidant status in spontaneously hypertensive rats. Am J Phsiol Integr Comp Physiol, 292, 64-68.
  • Tam NN., Gao Y., Leung YK., Ho SM., 2003a. Androgenic regulation of oxidative stress in the rat prostate: involvement of NAD(P)H oxidases and antioxidant defense machinery during prostatic involution and regrowth. Am J Pathol, 163, 2513-2522.
  • Tam NNC., Ghatak S., Ho SM., 2003b. Sex hormoneinduced alterations in the activities of antioxidant enzymes and lipid peroxidation status in the prostate of noble rats. The Prostate, 55, 1-8.
  • Tamagno E., Aragno M., Boccuzzi G., Gallo M., Parola S., Fubini B., Poli G., Danni O., 1998. Oxygen free radical scanvenger properties of dehydroepiandrosterone. Cell Biochem Funct, 16, 57-63.
  • von Schantz T., Bensch S., Grahn M., Hasselquist D., Wittzell H., 1999. Good genes, oxidative stress and condition-dependent sexual signals. Proc R Soc B, 266, 1–12.
  • Zhu XD., Bonet B., Knopp RH., 1997. 17beta-Estradiol, progesterone, and testosterone inversely modulate low-density lipoprotein oxidation and cytotoxicity in cultured placental trophoblast and macrophages. Am J Obstet Gynecol, 177, 196-209.