Buzağılarda immunomodülatör Zylexis’in kan glutatyon, malondialdehit, nitrik oksit, toplam ve lipit bağlı sialik asit seviyelerine etkileri

Zylexis inaktif paropoxvirus ovis içeren non spesifik paraimmun aktivatörü olup son yıllarda çeşitli infeksiyöz hastalıklara karşı koruyucu olarak kullanılmaktadır. Nitrik oksit (NO), reaktif oksijen türleri ve sialik asitler yangı ve bağışıklığın regülasyonunda önemli rollere sahip mediatörlerdir. Bu çalışmada Zylexis uygulamasının buzağılarda kan glutatyon (GSH), malondialdehit (MDA), nitrik oksit (NO), toplam ve lipit bağlı sialik asit (TSA, LSA) seviyeleri üzerine etkileri araştırılmıştır. Bu amaçla 12 adet 6-8 aylık Montafon ırkı buzağıdan başlangıçta (0. gün) kan örnekleri alındıktan sonra 1, 3 ve 5 günlerde intramusküler olarak 2 ml Zylexis uygulandı. Son uygulamadan sonraki 1, 3 ve 5. günlerde kan örnekleri alınarak biyokimyasal analizler yapıldı. İlaç uygulamasından önceki örneklerle (0. gün) karşılaştırıldığında Zylexis uygulaması ile buzağılarda kan MDA düzeyi 1 ve 3. günlerde yükselirken, GSH seviyelerinin 1, 3 ve 5. günlerde düştüğü tespit edildi. NO düzeylerinin tüm günlerde anlamlı bir şekilde yükseldiği tespit edildi. Total sialik asit seviyeleri 1. günde azalırken 3 ve 5. günlerde Zylexis uygulaması öncesine göre bir fark bulunamadı. Buna karşın, lipit bağlı sialik asit seviyesi 1 ve 3. günlerde değişmezken 5. günde yükseldiği gözlendi. Sonuç olarak, Zylexis’in oksidatif stres ile ilgili kan parametrelerinde MDA’da yükselişe yol açarak lipit peroksidasyonuna ve GSH seviyesinde düşüşe yol açarak antioksidan seviyesinde azalmaya yol açtığı tespit edilmiştir. Aynı zamanda, nitrik oksit ve sialik asit düzeylerinde değişiklikler tespit edilmiş olup, bu değişimlerin Zylexis’in immun cevap üzerindeki etkileri ile olan bağlantılarının daha detaylı çalışmalar ile ortaya konabileceği kanaatine varıldı.

Effect of immunomodulator Zylexis on blood glutathione, malondialdehyde, nitric oxide, total and lipid bound sialic acids levels in calves

Zylexis is a paraimmunity activator containing inactive paropoxvirus ovis which has been utilised as a protective against variety of infectious diseases. Nitric oxide (NO), reactive oxygen species and sialic acids are mediators playing important roles in inflammation and the regulation of immune response. In this study, effects of Zylexis administration on blood glutathione (GSH), malondialdehyde (MDA), nitric oxide (NO), total and lipid-bound sialic acid (TSA, LSA) levels were investigated in calves. For this purpose, 12 Brown Swiss breed calves at 6-8 months of age were used. Prior to the drug administration (on day 0), blood samples were collected, and then Zylexis (2 ml) was applied intramuscularly to the each calve on days 1, 3 and 5. Blood samples were also collected on days 1, 3 and 5 for biochemical analysis. In comparison to day zero samples, Zylexis increased the blood MDA levels on days 1 and 3, while GSH level was decreased on days 1, 3 and 5. NO concentration was significantly increased following Zylexis treatment on all days as compared to those of day zero samples. TSA levels decreased on day 1, while no difference was found on day 3 and 5, as compared to day zero. Moreover, LSA levels remained unchanged on days 1 and 3, while there was an increase on day 5 following Zylexis treatment. In conclusion, Zylexis could alter oxidative stress parameters leading to lipid peroxidation by increasing MDA and reduction of antioxidant status by decreasing GSH levels. Moreover, NO and sialic acid levels in the blood were also changed after drug administration. Considering the possible relationships with immune response, alterations in these parameters require further investigations.

___

  • Abu-El-Saad A.A., Abdel-Moneim A.S., 2005. Modulation of macrophage functions by sheeppox virus provides clues to understand interaction of the virus with host immune system. Virol J., 2, 22.
  • Beutler E., Duron O., Kelly B.M., 1963. Improved method for the determination of blood glutathione. J Lab Clin Med., 61, 882-888.
  • Blecha F., 1988. Immunomodulation: a means of disease prevention in stressed livestock. J Anim Sci., 66, 2084-2090.
  • Carreras M.C., Pargament G.A., Catz S.D., Poderoso J.J., Boveris A., 1994. Kinetics of nitric oxide and hydrojen peroxide production and formation of peroxynitrite during the respiratory burst of human neutrophils. FEBS Lett., 341, 65-68.
  • Constantini D., Moller A.P., 2009. Does immune response cause oxidative stress in birds? A meta-analysis. Comp Biochem Physiol A., 153, 339-344.
  • Constantini D., Dell'Omo G., 2006. Effects of T-cell mediated immune response on avian oxidative stress. Comp Biochem Physiol A., 145, 137-142.
  • de Zwart L.L., Meerman J.H., Commandeur J.N., Vermeulen N.P., 1999. Biomarkers of free radical damage applications in experimental animals and in humans. Free Radic Biol Med., 26, 202- 226.
  • Friebe A., Siegling A., Friederichs S., Volk H.D., Weber O., 2004. Immunomodulatory effects of inactivated parapoxvirus ovis (ORF virus) on human peripheral immune cells: induction of cytokine secretion in monocytes and Th1-like cells. J Virol.,78, 9400-9411.
  • Gökçe G., Irmak K., Sural E., Uzlu E., 1997. Koyun çiçeğinde immunomodülatörlerin sağaltıcı ve koruyucu etkileri üzerine klinik gözlemler. Kafkas Univ Vet Fak Derg., 3, 217-221.
  • Guzik T.J., Korbut R., Adamek-Guzik T., 2003. Nitric oxide and superoxide in inflammation and immune regulation. J Physıol Pharmacol., 54, 469-487.
  • Katopodis N., Stock C.C., 1980. Improved method to determine lipid bound sialic acid in plasma or serum. Res Commun Chem Pathol Pharmacol., 30, 171-180.
  • Miranda K.M., Espey M.G., Wink D.A., 2001. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide., 5, 62-71.
  • Perricone C., De Carolis C., Perricone R., 2009. Glutathione: A key player in autoimmunity. Autoimmun Rev., 8, 697-701.
  • Schutze N., Raue R., Buttner M., Alber G., 2009. Inactivated parapoxvirus ovis activates canine blood phagocytes and T lymphocytes. Vet Microbiol., 137, 260-267.
  • Schutze N., Raue R., Buttner M., Kohler G., McInnes C.J., Alber G., 2010. Specific antibodies induced by inactivated parapoxvirus ovis potently enhance oxidative burst in canine blood polymorphonuclear leukocytes and monocytes. Vet Microbiol., 140, 81-91.
  • Severi E., Hood D.W., Thomas G.H., 2007. Sialic acid utilization by bacterial pathogens. Microbiology., 153, 2817-2822.
  • Sternberg M.J., Mabbott N.A., 1996. Nitric oxidemediated suppression of T cell responses during Trypanosoma brucei infection: soluble trypanosome products and interferon-gamma are synergistic inducers of nitric oxide synthase. Eur J Immunol., 26, 539-543.
  • Sydow G., 1985. A simplified quick method for determination of sialic acid in serum. Biomed Biochim Acta., 44, 1721-1723.
  • Varki A., 2008. Sialic acids in human health and disease. Trends Mol Med. 14, 351-360.
  • Varki N.M., Varki A., 2007. Diversity in cell surface sialic acid presentations: implications for biology and disease. Lab Invest., 87, 851-857.
  • Victor M.V., Rocha M., De la Fuente M., 2004. Immmune cells: free radicals and antioxidants in sepsis. Int Immunopharmacol., 4, 327-347.
  • Weber O., Siegling A., Friebe A., Limmer A., Schlapp T., Knolle P., Mercer A., Schaller H., Volk H.D., 2003. Inactivated parapoxvirus ovis (Orf virus) has antiviral activity against hepatitis B virus and herpes simplex virus. J Gen Virol., 84, 1843- 1852.
  • Wu G., Fang Y.Z., Yang S., Lupton J.R., Turner N.D., 2004. Glutathione metabolism and its implications for health. J Nutr., 134, 489-492.
  • Yoshioka T., Kawada K., Shimada T., Mori M., 1979. Lipid peroxidation in maternal and cord blood and protective mechanism against activatedoxygen toxicity in the blood. Am J Obstet Gynecol., 135, 372-376.