Şizofreni ve Adenozin Reseptörleri

Şizofreni hastalığı toplumda yaklaşık %1 oranında görülmekle birlikte kesin tedavisi olmayan, kronik nöropsikiyatrikbir hastalıktır. Kişinin günlük yaşamını olumsuz etkileyen bilişsel ve duygusal işlevlerde bozulmaya neden olanşizofreninin fizyopatolojisi henüz aydınlatılamamıştır. Adenozin, merkezi sinir sisteminde birçok fonksiyonu etkileyenendojen bir nöromodülatör olarak rol oynamaktadır. Son yıllarda ise merkezi sinir sisteminde nöromodülatör olarakişlev gören adenozin ve reseptörlerinin şizofreni fizyopatolojisinde rol oynayabileceği ileri sürülmektedir. Biz dederlememizde şizofrenide adenozin ve reseptörlerinin nöromodülatör işlevini son literatür bilgileri ışığında inceledik.

Schizophrenia and Adenosine Receptors

Schizophrenia is a chronic neuropsychiatric disease, with a prevalence of about 1% in the population hes no definite treatment. The pathophysiology of schizophrenia, which causes deterioration in the cognitive and emotional functions that adversely affect the daily life of person, has not yet been elucidated. Adenosine acts as an endogenous neuromodulator that affects many functions in the central nervous system. In recent years it has been suggested that adenosine and its receptors, which function as neuromodulators in the central nervous system, may play a role in the pathophysiology of schizophrenia. In our review, we examined the neuromodulator function of adenosine and its receptors in schizophrenia in the light of recent literature.

___

  • 1. Black MD, Varty GB, Arad M, et al: Procognitive and antipsychotic efficacy of glycine transport 1 inhibitors (GlyT1) in acute and neurodevelopmental models of schizophrenia: latent inhibition studies in the rat. Psychopharmacology (Berl). 2009;202:385-96.
  • 2. Lara DR, Dall'Igna OP, Ghisolfi ES, et al: Involvement of adenosine in the neurobiology of schizophrenia and its therapeutic implications. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30:617-29.
  • 3. Ferre S, O'Connor WT, Snaprud P, et al: Antagonistic interaction between adenosine A2A receptors and dopamine D2 receptors in the ventral striopallidal system. Implications for the treatment of schizophrenia. Neuroscience. 1994;63:765-73.
  • 4. Olney JW, Farber NB: Glutamate Receptor Dysfunction and Schizophrenia. 5. Archives of General Psychiatry. 1995;52:998-1007.
  • 6. Krystal JH, Karper LP, Seibyl JP, et al: Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry. 1994;51:199-214.
  • 7. Schwartz TL, Sachdeva S, Stahl SM: Glutamate neurocircuitry: theoretical underpinnings in schizophrenia. Frontiers in Pharmacology. 3, 2012
  • 8. Catts VS, Lai YL, Weickert CS, et al: A quantitative review of the postmortem evidence for decreased cortical N-methyl-Daspartate receptor expression levels in schizophrenia: How can we link molecular abnormalities to mismatch negativity deficits? Biol Psychol. 2016;116:57-67.
  • 9. Jadi MP, Behrens MM, Sejnowski TJ: Abnormal Gamma Oscillations in NMethyl-D-Aspartate Receptor Hypofunction Models of Schizophrenia. Biol Psychiatry 2016;79:716-26.
  • 10. Ellaithy A, Younkin J, Gonzalez-Maeso J, et al: Positive allosteric modulators of metabotropic glutamate 2 receptors in schizophrenia treatment. Trends in Neurosciences. 2015;38:506-516.
  • 11. Eggers AE: Extending David Horrobin's membrane phospholipid theory of schizophrenia: Overactivity of cytosolic phospholipase A(2) in the brain is caused by overdrive of coupled serotonergic 5HT(2A/2C) receptors in response to stress. Medical Hypotheses. 2012;79:740-3.
  • 12. Yuen EY, Jiang Q, Chen P, et al: Activation of 5-HT2A/C receptors counteracts 5-HT1A regulation of N-methyl-D-aspartate receptor channels in pyramidal neurons of prefrontal cortex. Journal of Biological Chemistry. 2008;283:17194-17204.
  • 13. Schubert P, Komp W, Kreutzberg GW: Correlation of 5'-nucleotidase activity and selective transneuronal transfer of adenosine in the hippocampus. Brain Res. 1979;168:419-24.
  • 14. Dunwiddie TV, Diao L: Extracellular adenosine concentrations in hippocampal brain slices and the tonic inhibitory modulation of evoked excitatory responses. J Pharmacol Exp Ther. 1994;268:537-45.
  • 15. Fredholm BB, Battig K, Holmen J et al: Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51:83-133.
  • 16. Lloyd HG, Lindstrom K, Fredholm BB: Intracellular formation and release of adenosine from rat hippocampal slices evoked by electrical stimulation or energy depletion. Neurochem Int. 1993;23:173-85.
  • 17. Fredholm BB, Chen JF, Cunha RA, et al: Adenosine and brain function. Int Rev Neurobiol. 2005;63:191-270.
  • 18. Chen JF, Lee CF, Chern YJ: Adenosine. Receptor Neurobiology: Overview. Adenosine Receptors in Neurology and Psychiatry. 2014;119:1-49.
  • 19. Sebastiao AM, Ribeiro JA: Adenosine receptors and the central nervous system. Handb Exp Pharmacol: 2009;471-534.
  • 20. Eltzschig HK, Eckle T: Ischemia and reperfusion-from mechanism to translation. Nature Medicine. 2011;17:1391-1401.
  • 21. Hasko G, Linden J, Cronstein B, et al: Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nature Reviews Drug Discovery. 2008;7:759-770.
  • 22. Fredholm BB, AP IJ, Jacobson KA et al: International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev. 2001;53:527-52.
  • 23. Fredholm BB, Arslan G, Halldner L et al: Structure and function of adenosine receptors and their genes. Naunyn Schmiedebergs Arch Pharmacol. 2000;362:364-74.
  • 24. Fredholm BB, AP IJ, Jacobson KA et al: International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors--an update. Pharmacol Rev. 2011;63:1-34.
  • 25. Goodman RR, Snyder SH: Autoradiographic Localization of Adenosine Receptors in Rat-Brain Using [H-3] Cyclohexyladenosine. Journal of Neuroscience. 1982;2:12301241.
  • 26. Rebola N, Pinheiro PC, Oliveira CR et al: Subcellular localization of adenosine A(1) receptors in nerve terminals and synapses of the rat hippocampus. Brain Res. 2003;987:49-58.
  • 27. Fredholm BB, Dunwiddie TV: How Does Adenosine Inhibit Transmitter Release. Trends in Pharmacological Sciences. 1988;9:130-134.
  • 28. Johnston JB, Silva C, Gonzalez G et al: Diminished adenosine A1 receptor expression on macrophages in brain and blood of patients with multiple sclerosis. Annals of Neurology. 2001;49:650-658.2001
  • 29. Rosin DL, Robeva A, Woodard RL et al: Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system. J Comp Neurol. 1998;401:163-86.
  • 30. Rosin DL, Hettinger BD, Lee A et al: Anatomy of adenosine A2A receptors in brain: morphological substrates for integration of striatal function. Neurology. 2003;61:12-8.
  • 31. Navarro G, Borroto-Escuela DO, Fuxe K et al: Purinergic signaling in Parkinson's disease. Relevance for treatment. Neuropharmacology. 2016;104:161-168.
  • 32. Svenningsson P, Hall H, Sedvall G et al: Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse. 1997;27:322-35.
  • 33. Rebola N, Canas PM, Oliveira CR et al: Different synaptic and subsynaptic localization of adenosine A2A receptors in the hippocampus and striatum of the rat. Neuroscience. 2005;132:893-903.
  • 34. Ciruela F, Gomez-Soler M, Guidolin D et al: Adenosine receptor containing oligomers: their role in the control of dopamine and glutamate neurotransmission in the brain. Biochim Biophys Acta. 2011;1808:1245-55.
  • 35. Fredholm BB, Arslan G, Halldner L et al: Structure and function of adenosine receptors and their genes. NaunynSchmiedebergs Archives of Pharmacology. 2000;362:364-374.
  • 36. Ballarin M, Fredholm BB, Ambrosio S et al: Extracellular Levels of Adenosine and Its Metabolites in the Striatum of Awake Rats - Inhibition of Uptake and Metabolism. Acta Physiologica Scandinavica. 1991;142:97-103.
  • 37. Fisone G, Borgkvist A, Usiello A: Caffeine as a psychomotor stimulant: mechanism of action. Cellular and Molecular Life Sciences. 2004;61:857-872.
  • 38. Goncalves FQ, Pires J, Pliassova A et al: Adenosine A2b receptors control A1 receptor-mediated inhibition of synaptic transmission in the mouse hippocampus. Eur J Neurosci. 2015;41:878-88.
  • 39. Muller CE, Stein B: Adenosine receptor antagonists: Structures and potential therapeutic applications. Current Pharmaceutical Design. 1996;2:501-530.
  • 40. Hinz S, Navarro G, Borroto-Escuela D et al: Adenosine A2A receptor ligand recognition and signaling is blocked by A2B receptors. Oncotarget. 2018;9:13593-13611.
  • 41. Lopes LV, Rebola N, Pinheiro PC et al: Adenosine A3 receptors are located in neurons of the rat hippocampus. Neuroreport. 2003;14:1645-8.
  • 42. Fishman P, Bar-Yehuda S, Liang BT et al: Pharmacological and therapeutic effects of A3 adenosine receptor agonists. Drug Discov Today. 2012;17:359-66.
  • 43. Boison D: Adenosine dysfunction and adenosine kinase in epileptogenesis. Open Neurosci J. 2010;4:93-101.
  • 44. Little JW, Ford A, Symons-Liguori AM et al: Endogenous adenosine A3 receptor activation selectively alleviates persistent pain states. Brain. 2015;138:28-35.
  • 45. Dunwiddie TV, Fredholm BB: Adenosine Receptors Mediating Inhibitory Electrophysiological Responses in Rat Hippocampus Are Different from Receptors Mediating Cyclic-Amp Accumulation. Naunyn-Schmiedebergs Archives of Pharmacology. 1984;326:294-301.
  • 46. Ciruela F, Casado V, Rodrigues RJ et al: Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. Journal of Neurochemistry. 2007;102:97-97.
  • 47. Yin DM, Chen YJ, Sathyamurthy A et al: Synaptic dysfunction in schizophrenia. Adv Exp Med Biol. 2012;970:493-516.
  • 48. Canas PM, Porciuncula LO, Cunha GM et al: Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J Neurosci. 2009;29:14741- 51.
  • 49. Gomes CV, Kaster MP, Tome AR et al: Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta. 2011;1808:1380-99.
  • 50. Abbracchio MP, Cattabeni F: Brain adenosine receptors as targets for therapeutic intervention in neurodegenerative diseases. Ann N Y Acad Sci. 1999;890:79-92.
  • 51. Tebano MT, Martire A, Pepponi R et al: Is the functional interaction between adenosine A(2A) receptors and metabotropic glutamate 5 receptors a general mechanism in the brain? Differences and similarities between the striatum and the hippocampus. Purinergic Signal. 2006;2:619-25.
  • 52. Chen HH, Liao PF, Chan MH: mGluR5 positive modulators both potentiate activation and restore inhibition in NMDA receptors by PKC dependent pathway. Journal of Biomedical Science 18, 2011.
  • 53. Sarantis K, Tsiamaki E, Kouvaros S, et al: Adenosine A(2)A receptors permit mGluR5-evoked tyrosine phosphorylation of NR2B (Tyr1472) in rat hippocampus: a possible key mechanism in NMDA receptor modulation. J Neurochem. 2015;135:714- 26.
  • 54. Schiffmann SN, Fisone G, Moresco R et al: Adenosine A2A receptors and basal ganglia physiology. Prog Neurobiol. 2007;83:277-92.
  • 55. Borycz J, Pereira MF, Melani A et al: Differential glutamate-dependent and glutamate-independent adenosine A1 receptormediated modulation of dopamine release in different striatal compartments. J Neurochem. 2007;101:355-63.
  • 56. Fuxe K, Stromberg I, Popoli P et al: Adenosine receptors and Parkinson's disease. Relevance of antagonistic adenosine and dopamine receptor interactions in the striatum. Adv Neurol. 2001;86:345-53.
  • 57. Agnati LF, Fuxe K, Zini I, et al: Aspects on receptor regulation and isoreceptor identification. Med Biol. 1980;58:182-7.
  • 58. Fuxe K, Ferre S, Zoli M, et al: Integrated events in central dopamine transmission as analyzed at multiple levels. Evidence for intramembrane adenosine A(2A) dopamine D-2 and adenosine A(1) dopamine D-1 receptor interactions in the basal ganglia. Brain Research Reviews. 1998;26:258-273.
  • 59. Fuxe K, Ferre S, Genedani S et al: Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol Behav. 2007;92:2107.
  • 60. Ferre S, Voneuler G, Johansson B et al: Stimulation of High-Affinity Adenosine-A2 Receptors Decreases the Affinity of Dopamine D2 Receptors in Rat Striatal Membranes. Proceedings of the National Academy of Sciences of the United States of America. 1991;88:7238-7241.
  • 61. Al-Hasani R, Foster JD, Metaxas A et al: Increased desensitization of dopamine D(2) receptor-mediated response in the ventral tegmental area in the absence of adenosine A(2A) receptors. Neuroscience. 2011;190:103-11.
  • 62. Higley MJ, Sabatini BL: Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors. Nat Neurosci. 2010;13:958-66.
  • 63. Azdad K, Gall D, Woods AS et al: Dopamine D2 and adenosine A2A receptors regulate NMDA-mediated excitation in accumbens neurons through A2A-D2 receptor heteromerization. Neuropsychopharmacology. 2009;34:972-86.
  • 64. Borroto-Escuela DO, Romero-Fernandez W, Tarakanov AO, et al: On the existence of a possible A2A-D2-beta-Arrestin2 complex: A2A agonist modulation of D2 agonist-induced beta-arrestin2 recruitment. J Mol Biol. 2011;406:687-99.
  • 65. Akhondzadeh S, Shasavand E, Jamilian H et al: Dipyridamole in the treatment of schizophrenia: adenosine-dopamine receptor interactions. J Clin Pharm Ther. 2000;25:131-7.
  • 66. Wonodi I, Gopinath HV, Liu J et al: Dipyridamole monotherapy in schizophrenia: pilot of a novel treatment approach by modulation of purinergic signaling. Psychopharmacology (Berl). 2011;218:341-5.
  • 67. Sebastiao AM, Ribeiro JA: Neuromodulation and metamodulation by adenosine: Impact and subtleties upon synaptic plasticity regulation. Brain Research. 2015;1621:102-113.
  • 68. Ginsborg BL, Hirst GD: The effect of adenosine on the release of the transmitter from the phrenic nerve of the rat. J Physiol. 1972;224:629-45.
  • 69. Jackisch R, Strittmatter H, Kasakov L, et al: Endogenous Adenosine as a Modulator of Hippocampal Acetylcholine-Release. Naunyn-Schmiedebergs Archives of Pharmacology. 1984;327:319-325.
  • 70. Brown SJ, James S, Reddington M, et al: Both A1 and A2a Purine Receptors Regulate Striatal Acetylcholine-Release. Journal of Neurochemistry. 1990;55:31-8.
  • 71. Correiadesa P, Sebastiao AM, Ribeiro JA: Inhibitory and Excitatory Effects of Adenosine Receptor Agonists on Evoked Transmitter Release from Phrenic-Nerve Endings of the Rat. British Journal of Pharmacology. 1991;103:1614-1620.
  • 72. Cunha RA, Johansson B, van der Ploeg I. et al: Evidence for functionally important adenosine A2a receptors in the rat hippocampus. Brain Res. 1994;649:208-16.
  • 73. Kamiya H: Some Pharmacological Differences between Hippocampal Excitatory and Inhibitory Synapses in Transmitter Release - an Invitro Study. Synapse. 1991;8:229235.
  • 74. Ochiishi T, Chen L, Yukawa A et al: Cellular localization of adenosine A1 receptors in rat forebrain: Immunohistochemical analysis using adenosine A1 receptorspecific monoclonal antibody. Journal of Comparative Neurology. 1999;411:301-316.
  • 75. Rombo DM, Dias RB, Duarte ST, et al: Adenosine A1 Receptor Suppresses Tonic GABAA Receptor Currents in Hippocampal Pyramidal Cells and in a Defined Subpopulation of Interneurons. Cereb Cortex. 2016;26:1081-95.
  • 76. Rombo DM, Newton K, Nissen W, et al: Synaptic mechanisms of adenosine A2A receptor-mediated hyperexcitability in the hippocampus. Hippocampus. 2015;25:566-80.
  • 77. Cristovao-Ferreira S, Vaz SH, Ribeiro JA et al: Adenosine A2A receptors enhance GABA transport into nerve terminals by restraining PKC inhibition of GAT-1. Journal of Neurochemistry. 2009;109:336-347.
  • 78. Arai A, Kessler M, Lynch G: The Effects of Adenosine on the Development of Long-Term Potentiation. Neuroscience Letters. 1990;119:41-44.
  • 79. Demendonca A, Ribeiro JA: 2-Chloroadenosine Decreases Long-Term Potentiation in the Hippocampal Ca1 Area of the Rat. Neuroscience Letters. 1990;118:107-111.
  • 80. Flajolet M, Wang ZF, Futter M et al: FGF acts as a co-transmitter through adenosine A(2A) receptor to regulate synaptic plasticity. Nature Neuroscience. 2008;11:1402-9.
  • 81. Shen HY, Coelho JE, Ohtsuka N et al: A critical role of the adenosine A(2A) receptor in extrastriatal neurons in modulating psychomotor activity as revealed by opposite phenotypes of striatum and forebrain A2A receptor knock-outs. Journal of Neuroscience. 2008;28:2970-2975.
  • 82. Liang YC, Huang CC, Hsu KS: A role of p38 mitogen-activated protein kinase in adenosine A(1) receptor-mediated synaptic depotentiation in area CA1 of the rat hippocampus. Molecular Brain 1, 2008
  • 83. Huang CC, Liang YC, Hsu KS: A role for extracellular adenosine in timedependent reversal of long-term potentiation by lowfrequency stimulation at hippocampal CA1 synapses. Journal of Neuroscience. 1999;19:9728-38.
  • 84. Huang CC, Liang YC, Hsu KS: Characterization of the mechanism underlying the reversal of long term potentiation by low frequency stimulation at hippocampal CA1 synapses. Journal of Biological Chemistry. 2001;276:48108-117.
  • 85. Costenla AR, Lopes LV, de Mendonca A et al: A functional role for adenosine A3 receptors: modulation of synaptic plasticity in the rat hippocampus. Neurosci Lett. 2001;302:537.
  • 86. Costenla AR, Diogenes MJ, Canas PM et al: Enhanced role of adenosine A(2A) receptors in the modulation of LTP in the rat hippocampus upon ageing. European Journal of Neuroscience. 2011;34:12-21.
  • 87. Lopes LV, Cunha RA, Ribeiro JA: Increase in the number, G protein coupling, and efficiency of facilitatory adenosine A2A receptors in the limbic cortex, but not striatum, of aged rats. J Neurochem. 1999;73:1733-8.
  • 88. Batalha VL, Pego JM, Fontinha BM et al: Adenosine A(2A) receptor blockade reverts hippocampal stress-induced deficits and restores corticosterone circadian oscillation. Molecular Psychiatry. 2013;18:320-331.
  • 89. Lara DR, Souza DO: Schizophrenia: a purinergic hypothesis. Med Hypotheses. 2000;54:157-66.
  • 90. Akhondzadeh S, Safarcherati A, Amini H: Beneficial antipsychotic effects of allopurinol as add-on therapy for schizophrenia: a double blind, randomized and placebo controlled trial. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 2005;29:253-9.
  • 91. Kurumaji A, Toru M: An increase in [3H] CGS21680 binding in the striatum of postmortem brains of chronic schizophrenics. Brain Res. 1998;808:320-3.
  • 92. Rial D, Lara DR, Cunha RA: The Adenosine Neuromodulation System in Schizophrenia. Adenosine Receptors in Neurology and Psychiatry. 2014;119:395-449.
  • 93. Ning YL, Yang N, Chen X, et al: Adenosine A2A receptor deficiency alleviates blast-induced cognitive dysfunction. Journal of Cerebral Blood Flow and Metabolism. 2013;33:1789-98.
  • 94. Haller S, Rodriguez C, Moser D et al: Acute Caffeine Administration Impact on Working Memory-Related Brain Activation and Functional Connectivity in the Elderly: A Bold and Perfusion Mri Study. Neuroscience. 2013;250:364-71.
  • 95. Pereira GS, Rossato JI, Sarkis JJF et al: Activation of adenosine receptors in the posterior cingulate cortex impairs memory retrieval in the rat. Neurobiology of Learning and Memory. 2005;83:217-223.
  • 96. Augusto E, Matos M, Sevigny J et al: Ecto-5'-nucleotidase (CD73)-mediated formation of adenosine is critical for the striatal adenosine A2A receptor functions. J Neurosci. 2013;33:11390-9.
  • 97. Waldeck B: Effect of caffeine on locomotor activity and central catecholamine mechanisms: a study with special reference to drug interaction. Acta Pharmacol Toxicol (Copenh). 1975;36:1-23.
  • 98. El Yacoubi M, Ledent C, Menard JF et al: The stimulant effects of caffeine on locomotor behaviour in mice are mediated through its blockade of adenosine A(2A) receptors. British Journal of Pharmacology. 2000;129:1465-73.
  • 99. Shen HY, Canas PM, Garcia-Sanz P et al: Adenosine A(2)A receptors in striatal glutamatergic terminals and GABAergic neurons oppositely modulate psychostimulant action and DARPP-32 phosphorylation. PLoS One 8:e80902, 2013.