Sirkadiyen Saatin Epigenetikle İlişkisi

Sirkadiyen saat organizmaların biyokimyalarının, fizyolojilerinin ve davranışlarının günlük ritmlerini kontrol eder. Sirkadiyen ritmin bozulması, kanserler de dahil olmak üzere birçok uzun süreli hastalığı ve vücuttaki biyolojik süreçleri etkilemektedir. Sirkadiyen düzenleyici yollar, sirkadiyen epigenomların oluşumuna ve ritmik epigenetik değişikliklere neden olur. Sirkadiyenin bozulmasından dolayı oluşan hipermetilasyon gibi anormal epigenetik modifikasyonlar, normal hücrelerin kanser hücrelerine dönüşümüne sebep olabilir. Bu derlemede sirkadiyen genler ve düzenleyici proteinler, sirkadiyen saatin bozulması sonucu oluşan epigenetik değişikliklere ilişkin güncel kanıtlar ve sirkadiyen bozulmanın karsinojenik etkileri ve insanlardaki farklı kanserlerdeki potansiyel rolü tartışılacaktır

Relationship between Epigenetics and Circadian Clock

The circadian clock controls the daily rhythmicity of the biochemistry, physiology, and behavior of the organisms. Disruption of circadian rhythms, affects many biological processes within the body and results in different long-term diseases, such as cancer. Circadian regulatory pathways causes rhythmic epigenetic modifications and the formation of circadian epigenomes. Abnormal epigenetic modifications, such as hypermethylation, may be involved in the transformation of normal cells into cancer cells. In this review, some of the circadian genes and regulatory proteins, the current evidence related to the epigenetic modifications that result in circadian disruption and he carcinogenic effects of circadian disruption and its potential role in different human cancers using an epigenetic viewpoint will be reviewed

___

  • 1. Dunlap J. Molecular bases for circadian clocks,Cell J, 1999;96:271-90.
  • 2. Zhang RY, Mou LJ, Li XM, Li XW, Qin Y. Temporally relationship between renal local clock system and circadian rhythm of the water electrolyte excretion. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2015;37:698-704.
  • 3. Axelrod S, Saez L, Young MW. Studying circadian rhythm and sleep using genetic screens in Drosophila. Methods Enzymol.2015;551:3-27.
  • 4. Forni D, Pozzoli U, Cagliani R, Tresoldi C, Menozzi G. Genetic adaptation of the human circadian clock to day-length latitudinal variations and relevance for affective disorders. Genome Biol 2014;15:499.
  • 5. Imaizumi T, Kay SA. Photoperiodic control of flowering: not only by coincidence.Trends Plant Sci. 2006;11:550-8.
  • 6. Qiu C. Circadian clock-related genetic risk scores and risk of placental abruption. Placenta. 2015;36:1480-6.
  • 7. Moore RY, Bizu G, Marie D, Mahlet G. Circadian rhythms: basic neurobiology and clinical applications. Annu Rev Med.1997; 48:253-66.
  • 8. Lee J. Identification of a novel circadian clock modulator controlling BMAL1 expression through a ROR/REV-ERB-response element-dependent mechanism. Biochem Biophys Res Commun. 2016;469:580-6.
  • 9. Chen CY. Effects of aging on circadian patterns of gene expression in the human prefrontal cortex. Proc Natl Acad Sci U S A.2016;113:206-11.
  • 10. Langen B. Circadian rhythm influences genome-wide transcriptional responses to (131)I in a tissue-specific manner in mice. EJNMMI Res.2015;5:75.
  • 11. Dong C. Regulation of transforming growth factor-beta1 (TGF-beta1)-induced pro-fibrotic activities by circadian clock gene BMAL1. Respir Res.2016;17:4.
  • 12. Merrow M, Spoelstra K, Roenneberg T. The circadian cycle: daily rhythms from behaviour to genes.EMBO Rep.2005;6:930-5.
  • 13. T.Neural activity in the suprachiasmatic circadian clock of nocturnal mice anticipating a daytime meal. Neuroscience.2015;315:91-103.
  • 14. Bell D, Pedersen J, Cassone VM, Earnest DJ. Circadian rhythms from multiple oscillators: lessons from diverse organisms, Nat Rev Genet. 2005;6:544–56.
  • 15. Bell D, Pedersen J, Dunlap C, Loros JJ. Distinct cis-acting elements mediate clock, light, and developmental regulation of the Neurospora crassaeas (ccg-2) gene. Mol Cell Biol.1996;16:513- 21.
  • 16. Dauchy RT. Daytime blue light enhances the nighttime circadian melatonin inhibition of human prostate cancer growth.Comp Med.2015;65:473-85.
  • 17. Benard V. Seasons, circadian rhythms, sleep and suicidal behaviors vulnerability. Encephale. 2015;41:29-37.
  • 18. Young MW, Kay SA. Time zones: a comparative genetics of circadian clocks. Nat Rev Genet. 2001;2:702-15.
  • 19. Leu HB. Association of circadian genes with diurnal blood pressure changes and non-dipper essential hypertension: a genetic association with young-onset hypertension. Hypertens Res. 2015; 38:155-162.
  • 20. Yeim S. Circadian markers and genes in bipolar disorder. Encephale.2015;41:38-44.
  • 21. Oesch-Bartlomowicz B, Weiss C, Dietrich C, Oesch F. Circadian rhythms and chemical carcinogenesis: potential link: an overview. Mutat Res.2009;680:83-6.
  • 22. Schulman D. Shining a light on the problem of circadian phase disruption in the critically ill. Crit Care Med.2016;44:248-9.
  • 23. Banks G, Genetic background influences age-related decline in visual and nonvisual retinal responses, circadian rhythms, and sleep. Neurobiol Aging.2015;36:380-93.
  • 24. Terauchi K, Kitayama Y, Nishiwaki T. ATPase activity of KaiC determines the basic timing for circadian clock of cyanobacteria.Proc Natl Acad Sci U S A.2007;104:16377-81.
  • 25. Kageyama H, Kondo T, Iwasaki H. Circadian formation of clock protein complexes by KaiA, KaiB, KaiC, and SasA in cyanobacteria. J Biol Chem.2003;278:2388-95.
  • 26. Wang ZY, Tobin EM. Constitutive expression of the Circadian Clock Associated 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression.Cell.1998;93:1207-17.
  • 27. Welsh DK, Takahashi JS, Kay SA. Suprachiasmatic nucleus: cell autonomy and network properties, Annu Rev Physiol.2009;72:551-77.
  • 28. Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008;134:317-28.
  • 29. Kuo SJ. Disturbance of circadian gene expression in breast cancer. Virchows Arch. 2009;454:467- 74.