Miyokardın Diyastolde Kalsiyum Homeostazı

Kardiyak miyositlerdeki uyarılma-kasılma ilişkisi hücre içi kalsiyum (Ca++) taşıma mekanizmaları tarafından düzenlenmektedir. Diyastol süreci, ventriküllerin kan ile yeterli dolumu için oldukça önemlidir. Kalbin kasılmasını takiben diyastol dönemi olan gevşeme safhasının gerçekleşebilmesi için intraselüler ortamdaki Ca++'un uzaklaştırılması gerekmektedir. Caolarak hücre membranı üzerindeki Na+-Ca++ değiştiricisi ve sarkoplazmik retikulum üzerindeki sarkoendoplazmik Ca++ ATPaz (SERCA 2a) mekanizmaları rol oynamaktadır. Bu derlemede, ventriküler gevşemenin, Cakonsantrasyonundaki değişikliklerin diyastolik fonksiyonu nasıl etkilediği hakkında bilgi verilmiştir

Calcium Homeostasis of the Myocardium at Diastole

Excitation-contraction relationship at cardiac myocyte is regulated by intracellular calcium transport mechanisms. The diastolic process is important for adequate blood filling into the ventricles. Following contraction of the heart, cytosolic Ca++ must be removed from intracellular milieu to relaxation phase of diastole period. Na+- Ca++ changer in sarkolemma and sarcoendoplasmic reticulum Ca ATPaz (SERCA 2a) mechanism in the sarcoplasmic reticulum basically are involved in Ca++ removing from cytosolic milieu. This article aims to review the control of ventricular relaxation by Ca++ homeostasis and changes of intracellular Ca++ concentration and their effects on diastolic function

___

  • 1. Barry WH, Bridge JH. Intracellular calcium homeostasis in cardiac myocytes. Circulation. 1993;87:1806-15.
  • 2. Louch EW, Stokke MK, Sjaastad I, Christensen G, Sejersted OM. No rest for the weary: diastolic calcium homeostasis in the normal and failing myocardium. Physiology. 2012;27:308-23.
  • 3. Bootman MD, Higazi DR, Coombes S, Roderick HL. Calcium signalling during excitationcontraction coupling in mammalian atrial myocytes. J Cell Sci. 2006;119:3915-25.
  • 4. Vardar SA, Kaymak K, Altun A. Kalp kasının kasılmasında kalsiyum ve sarkoplazmik retikulumun rolü. Türkiye Klinikleri Tıp Bilimleri. 2002;22:630-4.
  • 5. Brette F,Orchard C. Resurgence of cardiac T-tubule research. Physiology. 2007;22:167-73.
  • 6. Treinys R, Jurevičius J. L-type Ca2+ channels in the heart: structure and regulation. Medicina (Kaunas). 2008; 44:191-9.
  • 7. Fabiato A. Calcium induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol. 1983;245:C1-C14.
  • 8. Greenstein JL, Foteinou PT, Hashambhoy-Ramsay YL, Winslow RL. Modeling CaMKII-mediated regulation of L type Ca2+ channels and ryanodine receptors in the heart. Front Pharmacol. 2014;5:60.
  • 9. Niggli E, Ullricha ND, Gutierrez D, Kyrychenko S, Poláková E, Shirokova N. Posttranslational modifications of cardiac ryanodine receptors. Biochim Biophys Acta. 2013;1833:866-75.
  • 10. Maier LS, Bers DM. Role of Ca2+ /calmodulin-dependent protein kinase (CaMK) in excitation– contraction coupling in the heart. Cardiovasc Res. 2007;73:631-40.
  • 11. Zhang T, Brown JH. Role of Ca2+ /calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure. Cardiovasc Res. 2004;63:476-86.
  • 12. Hudmon A, SchulmanH, KimJ, Maltez JM, Tsien RW, Pitt GS. CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation. J Cell Biol. 2005;171:537-47.
  • 13. Frank KF, Erdmann E, Schwinger RHG. Sarcoplasmic reticulum Ca2+ -ATPase modulates cardiac contraction and relaxation. Cardiovasc Res. 2003;57:20-7.
  • 14. Movsesianz MA, Nishikawa M, Adelstein RS. Phosphorylation of phospholamban by calciumactivated, phospholipid-dependent protein kinase, sitimulation of cardiac sarcoplasmic reticulum calcium uptake. Biol Chem. 1984;259:8029-32.
  • 15. Chu G, Lester JW, Young KB, Luo W, Zhai J, Kranias EG. A single site (Ser16) phosphorylation in phospholamban is sufficient in mediating its maximal cardiac responses to beta -agonists. J Biol Chem. 2000;275:38938-43.