Poly(lactic-co-glycolic acid) based drug delivery devices for tissue engineering and regenerative medicine

Poli(D,L-laktid-ko-glikolid) (PLGA) kontrollü salım (KS) uygulamalarında terapötik ilaçları enkapsüle eden nano/mikropartiküllerin geliştirilmesinde sıklıkla kullanılan biyolojik olarak parçalanma özelliğine sahip bir polimerdir. PLGA ile hazırlanmış ilaç sistemlerinin konvansiyonel sistemlere göre çok sayıda avantajı bulunmaktadır. Bu avantajlardan biri, ilaçların uzatılmış salım özelliklerinin günler, haftalar veya aylarca devam edebilmesidir. PLGA’nın yaygın kullanımının diğer sebepleri ise biyolojik olarak parçalanabilir olması, biyolojik olarak geçimli olması ve FDA (Gıda ve İlaç İdaresi) tarafından onaylanmış olmasıdır. Kanser tedavisinde kullanılan ilaçlar, analjezikler, antibiyotikler gibi çeşitli aktif farmasötik ajanların yanısıra protein, peptid, gen, aşı, antijen, insan büyüme faktörleri, vasküler endotelial büyüme faktörleri gibi makromoleküler yapıdaki çeşitli ilaçlar PLGA veya PLGA ile hazırlanmış ilaç sistemleri içerisine başarılı bir şekilde yüklenebilmektedir. Sonuç olarak bu sistemler genel olarak ilaçların hedeflendirilmesinde (hücresel veya doku temelinde), ayrıca lokal etkilerinin de fayda sağlayacağı sistemlerde kullanılmaktadır. Biyoyararlanımı artırırlar, ilaç salımını uzatırlar veya sistemik etki amacıyla ilaçların çözünmesini sağlarlar. Gelecekte yapılacak araştırma ve geliştirme çalışmalarında PLGA veya PLGA ile hazırlanmış ilaç sistemleri çeşitli avantajlarından dolayı ilgi çekici bir alandır. Bu derlemede PLGA’nın fizikokimyasal ve biyolojik olarak parçalanma özelliklerinin yanısıra doku mühendisliği ve rejeneratif tıp için PLGA ile hazırlanmış ilaç sistemleri sunulmaktadır.

Doku mühendisliği ve rejeneratif tıpta kullanılan poli (laktik-ko-glikolik asit) ile hazırlanmış ilaç sistemleri

Poly(D,L-lactide-co-glycolide) (PLGA) is the most frequently used biodegradable polymer for developing nano/microparticles encapsulating therapeutic drugs in controlled release (CR) applications. PLGA based drug delivery devices have several advantages over the conventional devices. One of the advantage is the extended release rates of drugs up to days, weeks or months. Other reasons for the widespread use of PLGA are its biodegradability, its biocompatibility, and the fact that PLGA has been approved by FDA (Food and Drug Administration). Numerous active pharmaceutical ingredients such as anti-cancer drugs, analgesics, antibiotics and macromolecular drugs such as proteins, peptides, genes, vaccines, antigens, human growth factors, vascular endothelial growth factors etc., are successfully incorporated into PLGA or PLGA based drug delivery devices. As a result, these systems in general can be used to provide targeted (cellular or tissue) delivery of drugs, which localized effect represents also an important benefit. They improve bioavailability, sustain release of drugs or solubilize drugs for systemic delivery. Drug delivery using PLGA or PLGA based polymers is an attractive area with various opportunities for further research and developmental work. In this review, physicochemical and biodegradable properties of PLGA and PLGA based drug delivery devices for tissue engineering and regenerative medicine will be presented.

___

  • 1. Alarçin E, Sipahigil O, Türkoğlu M et al. Cell proliferation and cytotoxicity evaluation of vascular endothelial growth factor loaded poly(lactic-co-glycolic acid) microspheres, 15th International Pharmaceutical Technology Symposium, Proceeding Abstracts, p:121-2, Antalya (2010).
  • 2. Andreas K, Zehbe R, Kazubek M et al. Biodegradable insulin-loaded PLGA microspheres fabricated by three different emulsification techniques: Investigation for cartilage tissue engineering, Acta Biomater 2011;7(4):1485-95. http://dx.doi.org/10.1016/j.actbio.2010.12.014 PMid:21168535
  • 3. Armentano I, Dttori M, Fortunati E et al. Biodegradable polymer matrix nanocomposites for tissue engineering: A review, Polym Degrad Stab 2010;95:2126-46. http://dx.doi.org/10.1016/j.polymdegradstab.2010.06.007
  • 4. Atala A, Robert PL (eds). Methods of Tissue Engineering, Academic Press, USA (2002).
  • 5. Attawia MA, Herbert KM, Laurencin CT. Osteoblast like cell adherence and migration through 3-dimensional porous polymer matrices, Biochem Biophys Res Commun 1995;213(2):639-44. http://dx.doi.org/10.1006/bbrc.1995.2179 PMid:7646521
  • 6. Bala I, Hariharan S, Kumar MN. PLGA nanoparticles in drug delivery: the state of the art, Crit Rev Ther Drug Carrier Syst 2004;21(5):387-422. http://dx.doi.org/10.1615/CritRevTherDrug CarrierSyst.v21.i5.20 PMid:15719481
  • 7. Baldwin SP, Saltzman WM. Materials for protein delivery in tissue engineering, Adv Drug Deliv Rev 1998;33(1-2):71-86. http://dx.doi.org/10.1016/S0169-409X(98)00021-0
  • 8. Bergsma EJ, Rozema FR, Bos RR, de Bruijn WC. Foreign body reactions to resorbable poly(L-lactide) bone plates and screws used for fixation of unstable zygomatic fractures, J Oral Maxillofac Surg 1993; 51(6):666-70. http://dx.doi.org/10.1016/S0278-2391(10)80267-8
  • 9. Bertoldi C, Zaffe D, Consolo U. Polylactide/polyglycolide copolymer in bone defect healing in humans, Biomaterials 2008;29(12):1817-23. http://dx.doi.org/10.1016/j.biomaterials.2007.12.034 PMid:18234328
  • 10. Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part I (basic concepts), J Tissue Eng Regen Med 2008;2(1):1-13. http://dx.doi.org/10.1002/term.63 PMid:18293427
  • 11. Bilati U, Allemann E, Doelker E. Poly (D,L-lactide-co-glycolide) protein loaded nanoparticles prepared by the double emulsion method-processing and formulation issues for enhanced entrapment efficiency, J Microencapsul 2005;22(2):205-14. http://dx.doi.org/10.1080/02652040400026442 PMid:16019905
  • 12. Bilati U, Allemann E, Doelker E. Strategic approaches for overcoming peptide and protein instability with biodegradable nano- and microparticles, Eur J Pharm Biopharm 2005;59(3):375-88. http://dx.doi.org/10.1016/j.ejpb.2004.10.006 PMid:15760718
  • 13. Bini TB, Gao S, Xu X, Wang S, Ramakrishna S, Leong KW. Peripheral nerve regeneration by microbraided poly(L-lactide-co-glycolide) biodegradable polymer fibers, J Biomed Mater Res A 2004;68(2):286-95. http://dx.doi.org/10.1002/jbm.a.20050 PMid:14704970
  • 14. Bryan DJ, Wang KK, Chakalis-Haley DP. Effect of Schwann cells in the enhancement of peripheral nerve regeneration, J Reconstr Microsurg 1996; 12(7):439-46. http://dx.doi.org/10.1055/s-2007-1006616 PMid:8905543
  • 15. Burt RL, Davidson IW. Insulin half-life and utilization in normal pregnancy, Obstet Gynecol 1974;43(2):161-70. PMid:4855689
  • 16. Cai L, Okumu FW, Cleland JL et al. A slow release formulation of insulin as a treatment for osteoarthritis, Osteoarthritis Cartilage 2002;10(9):692-706. http://dx.doi.org/10.1053/joca.2002.0813 PMid:12202122
  • 17. Carrasqullio KG, Stanley AM, Aponto-Carro JC et al. Non-aqueous encapsulation of exipient stabilized spray freeze dried BSA into poly (D,L-lactide-co-glycolide) microspheres results in release of native protein, J Control Release 2001;76(3):199-208. http://dx.doi.org/10.1016/S0168-3659(01)00430-8
  • 18. Cohen S, Alonso MJ, Langer R. Novel approaches to controlled release antigen delivery, Int J Technol Assessment Health Care 1994;10(1):121-30. http://dx.doi.org/10.1017/S0266462300014045
  • 19. Cui C, Stevens VC, Schewendeman SP. Injectable polymer microspheres enhance immunogenicity of a contraceptive peptide vaccine, Vaccine 2007;25(3):500-9. http://dx.doi.org/10.1016/j.vaccine.2006.07.055 PMid:16996662
  • 20. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: An overview of biomedical applications, J Control Release 2012. http://dx.doi.org/10.1016/j.jconrel.2012.01.043 PMid:22353619
  • 21. des Rieux A, Ucakar B, Mupendwa BP et al. 3D systems delivering VEGF to promote angiogenesis for tissue engineering, J Control Release 2011; 150(3):272-8. http://dx.doi.org/10.1016/j.jconrel.2010.11.028 PMid:21130820
  • 22. Desai, KGH, Olsen KF, Mallery SR, Stoner GD, Schwendeman SP. Formulation and in vitro and in vivo evaluation of black raspberry extract loaded PLGA/PLA injectable millicylindrical implants for sustained delivery of chemopreventive anthocyanins, Pharm Res 2010;27(4):628-43. http://dx.doi.org/10.1007/s11095-009-0038-5 PMid:20148292 PMCid:2880396
  • 23. Dong WY, Körber M, López Esguerra V, Bodmeier R. Stability of poly(D,L-lactide-co-glycolide) and leuprolide acetate in in situ forming drug delivery systems, J Control Release 2006;115(2):158-67. http://dx.doi.org/10.1016/j.jconrel.2006.07.013 PMid:16963145
  • 24. Dorta MJ, Santovena A, Llabrés M, Farina JB. Potential application of PLGA film implants in modulating in vitro drugs release, Int J Pharm 2002;248(1-2):149-56. http://dx.doi.org/10.1016/S0378-5173(02)00431-3
  • 25. Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis, Am J Pathol 1995;146(5):1029-39. PMid:7538264 PMCid:1869291
  • 26. Feng L, Qi XR, Zhou XJ et al. Pharmaceutical and immunological evaluation of a single dose hepatitis vaccine using PLGA microspheres, J Control Release 2006;112(1):35-42. http://dx.doi.org/10.1016/j.jconrel.2006.01.012 PMid:16516999
  • 27. Formiga FR, Pelacho B, Garbayo E et al. Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia-reperfusion model, J Control Release 2010;147(1):30-7. http://dx.doi.org/10.1016/j.jconrel.2010.07.097 PMid:20643169
  • 28. Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanism of drug release in poly(lactic-co-glycolic) acid- based drug delivery systems:A review, Int J Pharm 2011;415(1-2):34-52. http://dx.doi.org/10.1016/j.ijpharm.2011.05.049 PMid:21640806
  • 29. Freed LE, Vunjak-Novakovic G, Biron RJ et al. Biodegradable polymer scaffolds for tissue engineering, Nature Biotech 1994;12(7):689-93. http://dx.doi.org/10.1038/nbt0794-689 PMid:7764913
  • 30. Frerich B, Lindemann N, Kurtz-Hoffmann J, Oertel K. In vitro model of a vascular stroma for the engineering of vascularized tissues, Int J Oral Maxillofac Surg 2001;30(5):414-20. http://dx.doi.org/10.1054/ijom.2001.0130 PMid:11720044
  • 31. Ge H, Hu Y, Jiang X et al. Preparation, characterization, and drug release behaviors of drug nimodipine-loaded poly (epsilon-caprolactone)-poly(ethylene oxide)-poly(epsilon-caprolactone) amphiphilic triblock copolymer micelles, J Pharm Sci 2002;91(6):1463-73. http://dx.doi.org/10.1002/jps.10143 PMid:12115846
  • 32. Gu H, Song C, Long D, Mei L, Sun H. Controlled release of recombinant human nerve growth factor (rhNGF) from poly[(lactic acid)-co(glycolic acid)] microspheres for the treatment of neurodegenerative disorders, Polym Int 2007;56(10):1272-80. http://dx.doi.org/10.1002/pi.2272
  • 33. Gu X, Ding F, Yang Y, Liu J. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration, Prog Neurobiol 2011;93(2):204-30. http://dx.doi.org/10.1016/j.pneurobio.2010.11.002 PMid:21130136
  • 34. Hanafusa S, Matsusue Y, Yasunaga T et al. Biodegradable plate fixation of rabbit femoral shaft osteotomies. A comparative study, Clin Orthop Relat Res 1995;315:262-71. PMid:7634680
  • 35. Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering, Biomaterials 2011;32(36):9622-9. http://dx.doi.org/10.1016/j.biomaterials.2011.09.009 PMid:21944829
  • 36. Houchin ML, Topp EM. Chemical degradation of peptides and proteins in PLGA: a review of reactions and mechanisms, J Pharm Sci 2008;97(7):2395-404. http://dx.doi.org/10.1002/jps.21176 PMid:17828756
  • 37. Ishaug-Riley SL, Crane-Kruger GM, Yaszemski MJ, Mikos AG. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers, Biomaterials 1998;19(15):1405-12. http://dx.doi.org/10.1016/S0142-9612(98)00021-0
  • 38. Jain RA. The manufacturing techniques of various drug loaded biodegradable poly (D,L-lactide-co-glycolide) (PLGA) devices, Biomaterials 2000;21(23): 2475-90. http://dx.doi.org/10.1016/S0142-9612(00)00115-0
  • 39. Jalil R, Nixon JR. Biodegradable poly(lactic acid) and poly(lactide-co-gycolide) microcapsules: problems associated with preparative techniques and release properties, J Microencapsulation 1990;7(3):297-325. http://dx.doi.org/10.3109/02652049009021842 PMid:2200861
  • 40. Jamshidi K, Hyon SH, Ikada Y. Thermal characterization of polylactides, Polymer 1988;29(12):2229-34. http://dx.doi.org/10.1016/0032-3861(88)90116-4
  • 41. Kamei S, Inoue Y, Okada H, Yamada M, Ogawa Y, Toguchi H. New method for analysis of biodegradable polyesters by high performance liquid chromarography after alkali hydrolysis, Biomaterials 1992;33(13):953-8. http://dx.doi.org/10.1016/0142-9612(92)90120-D
  • 42. Karagöz H, Ülkür E, Sipahigil O et al. Nerve graft prefabrication using vascular endothelial growth factor-loaded poly(lactic-co-glycolic acid) microspheres, Turkish Society of Plastic Reconstructive and Aesthetic Surgery, 33rd The National Assembly, İzmir (2011).
  • 43. Karagöz H, Ülkür E, Sipahigil O et al. Vascular endothelial growth factor-loaded poly(lactic-co-glycolic acid) microspheres-induced lateral axonal sprouting into the vein graft bridging two healthy nerves: nerve graft prefabrication using controlled release system, Microsurgery, article in press.
  • 44. Kim DH, Martin DC. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery, Biomaterials 2006;27(15):3031-7. http://dx.doi.org/10.1016/j.biomaterials.2005.12.021 PMid:16443270
  • 45. Klose D, Siepmann F, Elkharraz K, Siepmann J. PLGA based drug delivery systems: importance of the type of drug and device geometry, Int J Pharm 2008;354(1-2):95-103. http://dx.doi.org/10.1016/j.ijpharm.2007.10.030 PMid:18055140
  • 46. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems, Colloids Surf B Biointerfaces 2010;75(1):1-18. http://dx.doi.org/10.1016/j.colsurfb.2009.09.001 PMid:19782542
  • 47. Ladewig K. Drug delivery in soft tissue engineering, Expert Opin Drug Deliv 2011;8(9):1175-88. http://dx.doi.org/10.1517/17425247.2011.588698 PMid:21679089
  • 48. Lagarce F, Renaud P, Faisant N et al. Baclofen loaded microspheres: preparation and efficacy testing in a new rabbit model, Eur J Pharm Biopharm 2005;59(3):449-59. http://dx.doi.org/10.1016/j.ejpb.2004.08.013 PMid:15760725
  • 49. Laurencin CT, Attawia MA, Elgendy HE, Herbert KM. Tissue engineered bone regeneration using degradable polymer: The formation of mineralized matrices, Bone 1996;19(Suppl 1):S93-9. http://dx.doi.org/10.1016/S8756-3282(96)00132-9
  • 50. Lewis DH. Controlled release of bioactive agents from lactide/glycolide polymers, “Chasin M, Langer R (eds): Biodegradable Polymers as Drug Delivery Systems” p.1-41, Marcel Dekker, New York (1990).
  • 51. Li S, Vert M. Biodegradation of aliphatic polyesters, “Scott G, Gilead D (eds). Degradable Polymers” Chapter 4, p. 43-87, Chapman and Hall, London (1995).
  • 52. Mikos AG, Herring SW, Ochareon P et al. Engineering complex tissues, Tissue Eng 2006; 12(12):3307-39. http://dx.doi.org/10.1089/ten.2006.12.3307 PMid:17518671 PMCid:2821210
  • 53. Mo Y, Lim LY. Paclitaxel loaded PLGA nanoparticles: potentiation of anti cancer activity by surface conjugation with wheat germ agglutinin, J Control Release 2005;108(2-3):244-62. http://dx.doi.org/10.1016/j.jconrel.2005.08.013 PMid:16213056
  • 54. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro technologies for delivering macromolecular therapeutics using poly (D,L-lactide-co-glycolide) and its derivatives, J Contr Release 2008;125(3):193-209. http://dx.doi.org/10.1016/j.jconrel.2007.09.013 PMid:18083265
  • 55. Murata N, Takashima Y, Toyoshima K, Yamamoto M, Okada H. Anti tumor effects of anti VEGF siRNA encapsulated with PLGA microspheres in mice, J Conrol Release 2008;126(3):246-54. http://dx.doi.org/10.1016/j.jconrel.2007.11.017 PMid:18215787
  • 56. Nieddu E, Mazzucco L, Gentile P et al. Preparation and biodegradation of clay composites of PLA, Reactive Functional Polymers 2009;69(6):371-9. http://dx.doi.org/10.1016/j.reactfunctpolym.2009.03.002
  • 57. Ong BY, Ranganath SH, Lee LY et al. Paclitaxel delivery from PLGA foams for controlled release in post surgical chemotherapy against glioblastoma multiforme, Biomaterials 2009;30(18):3189-96. http://dx.doi.org/10.1016/j.biomaterials.2009.02.030 PMid:19285718
  • 58. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue, Adv Drug Deliv Rev 2003;55(3):329-47. http://dx.doi.org/10.1016/S0169-409X(02)00228-4
  • 59. Patel P, Mundargi RC, Babu VR, Jain D, Rangaswamy V, Aminabhavi TM. Microencap-sulation of doxycycline into poly(lactide-co-glycolide) by spray drying technique: effect of polymer molecular weight on process parameters, J Appl Polym Sci 2008;108(6):4038-46. http://dx.doi.org/10.1002/app.28040
  • 60. Peppas NA, Langer R. New challenges in biomaterials, Science 1994;263(5154):1715-20. http://dx.doi.org/10.1126/science.8134835 PMid:8134835
  • 61. Ralner BD, Hoffman S, Schoen FJ et al. Biomaterials Science “An Introduction to Materials in Medicine”, 2nd ed, Elsevier Academic Press, China (2004).
  • 62. Ratajczak-Emselme M, Estebe JP, Dollo G et al. Epidural, intrathecal and plasma pharmacokine-tics study of epidural ropivacaine in PLGA microspheres in sheep model, Eur J Pharm Biopharm 2009;72(1):54-61. http://dx.doi.org/10.1016/j.ejpb.2008.11.003 PMid:19061956
  • 63. Ravi Kumar MN, Bakowsky U, Lehr CM. Preparation and characterization of cationic PLGA nanospheres as DNA carriers, Biomaterials 2004;25(10):1771-7. http://dx.doi.org/10.1016/j.biomaterials.2003.08.069 PMid:14738840
  • 64. Reddi AH. Cell biology and biochemistry of endochondral bone development, Coll Relat Res 1981;1(2):209-26. http://dx.doi.org/10.1016/S0174-173X(81)80021-0
  • 65. Ruhé PQ, Boerman OC, Russel FG, Spauwen PH, Mikos AG, Jansen JA. Controlled release of rhBMP-2 loaded poly(dl-lactic-co-glycolic acid)/calcium phosphate cement composites in vivo, J Control Release 2005;106(1-2):162-71. http://dx.doi.org/10.1016/j.jconrel.2005.04.018 PMid:15972241
  • 66. Sanders LM, Wayne Hendren R. Protein Delivery, Plenum Press, New York (1997).
  • 67. Schulze-Tanzil G. Activation and dedifferentiation of chondrocytes: Implications in cartilage injury and repair, Ann Anat 2009;191(4):325-38. http://dx.doi.org/10.1016/j.aanat.2009.05.003 PMid:19541465
  • 68. Sharma G, Italia JL, Sonaje K, Tikoo K, Ravi Kumar MN. Biodegradable in situ gelling system for subcutaneous administration of ellagic acid and ellagic acid loaded nanoparticles: evaluation of their antioxidant potential against cyclosporine induced nephrotoxicity in rats, J Control Release 2007;118(1):27-37. http://dx.doi.org/10.1016/j.jconrel.2006.11.026 PMid:17258836
  • 69. Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres, Adv Drug Deliv Rev 1997;28(1):5-24. http://dx.doi.org/10.1016/S0169-409X(97)00048-3
  • 70. Siemionow M, Bozkurt M, Zor F. Regeneration and repair of peripheral nerves with different biomaterials: Review, Microsurg 2010;30(7):574-88. http://dx.doi.org/10.1002/micr.20799 PMid:20878689
  • 71. Sipahigil O, Alarçin E, Türkoğlu M et al. Preparation and characterization of vascular endothelial growth factor loaded poly(lactic-co-glycolic acid) microspheres, 3rd International Meeting on Pharmacy and Pharmaceutical Sciences, Proceeding Abstracts, p:73, İstanbul (2010).
  • 72. Sipahigil O, Alarçin E, Türkoğlu M et al. Characterization, cell proliferation and cytotoxi-city evaluation of vascular endothelial growth factor loaded poly(lactic-co-glycolic acid) microspheres, Nobel Med 2012; 8 (1): 77-82.
  • 73. Tabata Y, Miyao M, Ozeki M, Ikada Y. Controlled release of vascular endothelial growth factor by use of collagen hydrogels, Biomater Sci Polym Ed 2000;11(9):915-30.
  • 74. Tice TR, Tabibi ES. Parenteral drug delivery: injectables, “Kydonieus A (ed): Treatise on Controlled Drug Delivery: Fundamentals, Optimization, Applications” p.315-39, Marcel Dekker, New York (1991).
  • 75. Tuli R, Li WJ, Tuan RS. Current state of cartilage tissue engineering, Arthritis Res Ther 2003;5(5): 235-8. http://dx.doi.org/10.1186/ar991
  • 76. Umeki N, Sato T, Harada M et al. Preparation and evaluation of biodegradable microspheres containing a new potent osteogenic compound and new synthetic polymers for sustained release, Int J Pharm 2010;392(1-2):42-50. http://dx.doi.org/10.1016/j.ijpharm.2010.03.020 PMid:20227474
  • 77. Vo TN, Kasper FK, Mikos AG. Strategies for controlled delivery of growth factors and cells for bone regeneration, Adv Drug Deliv Rev 2012, http://dx.doi.org/10.1016/j.addr.2012.01.016 PMid:22342771
  • 78. Wang X, Mäkitie AA, Paloheimo KS et al. Characterization of a PLGA sandwiched cell/fibrin tubular construct and induction of the adipose derived stem cells into smooth muscle cells, Materials Science Engineering C 2011;31(4):801-8. http://dx.doi.org/10.1016/j.msec.2010.10.007
  • 79. Wang X, Sui S, Yan Y, Zhang R. Design and fabrication of PLGA sandwiched cell/fibrin constructs for complex organ regeneration, J Bioactive Compatible Polym 2010;25(3):229-40. http://dx.doi.org/10.1177/0883911510365661
  • 80. Weinberg BD, Blanco E, Gao J. Polymer implants for intratumoral drug delivery and cancer therapy, J Pharm Sci 2008;97(5):1681-702. http://dx.doi.org/10.1002/jps.21038 PMid:17847077
  • 81. Wu XS. Synthesis and properties of biodegradable lactic/glycolic acid polymers. “Wise et al. (eds): Encyclopedic Handbook of Biomaterials and Bioengineering” p. 1151-200, Marcel and Dekker, New York, (1995).
  • 82. Xiong Y, Zeng YS, Zeng CG et al. Synaptic transmission of neural stem cells seeded in 3-dimensional PLGA scaffolds, Biomaterials 2009;30(22): 3711-22. http://dx.doi.org/10.1016/j.biomaterials.2009.03.046 PMid:19375792
  • 83. Xu Q, Czernuszka JT. Controlled release of amoxicillin hydroxyapatite coated poly(lactic-co-glycolic acid) microspheres, J Control Release 2008;1 27(2):146-53. http://dx.doi.org/10.1016/j.jconrel.2008.01.017 PMid:18325617
  • 84. Yen SY, Sung KC, Wang JJ, Yoa-Pu Hu O. Controlled release of nalbuphine propionate from biodegradable microspheres: in vitro and in vivo studies, Int J Pharm 2001;220(1-2):91-9. http://dx.doi.org/10.1016/S0378-5173(01)00649-4
  • 85. Yilgor P, Hasirci N, Hasirci V. Sequential BMP-2/BMP-7 delivery from polyester nanocapsules, J Biomed Mater Res A 2010;93(2):528-36. PMid:19585564
  • 86. Zhang Y, Yang F, Liu K et al. The impact of PLGA scaffold orientation on in vitro cartilage regeneration, Biomaterials 2012;33(10):2926-35. http://dx.doi.org/10.1016/j.biomaterials.2012.01.006 PMid:22257722
  • 87. Zhou H, Lawrence JG, Bhaduri SB. Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: A review, Acta Biomater 2012. http://dx.doi.org/10.1016/j.actbio.2012.01.031 PMid:22342596
  • 88. Zhu G, Schewendeman SP. Stabilization of proteins encapsulated in cylindirical poly(lactide-co-glycolide) implants: mechanisms of stabilization by basic additives, Pharm Res 2000;17(3):351-7. http://dx.doi.org/10.1023/A:1007513425337 PMid:10801225
  • 89. Zolnik BS, Burgess DJ. Evaluation of in vivo-in vitro release of dexamethasone from PLGA microspheres, J Control Release 2008;127(2):137-45. http://dx.doi.org/10.1016/j.jconrel.2008.01.004 PMid:18282629