Acinetobacter Baumannii’nin antibiyotik direnç mekanizmaları

Acinetobacter baumannii cins içerisinde infeksiyonlarla en sık ilişkili insan patojenidir. Bu fırsatçı patojen özellikle düşkün hastalarda oldukça ciddi infeksiyonlara neden olup yeni antibiyotiklere hızla direnç geliştirme yeteneğine sahiptir. Yakın geçmişte karbapenemler A.baumannii infeksiyonlarının tedavisinde ilk seçenekti. Ancak son zamanlarda pek çok klinik A.baumannii izolatı karbapenemler de dahil tüm konvansiyonel antibiyotiklere direnç kazanmıştır. Acinetobacter’deki ilaç direncini açıklayan en önemli güncel bulgular duyarlı ve dirençli suşların karşılaştırıldığı genomik analizler ile elde edilmiştir. Genom dizilerinin bir araya getirilmesi sonucunda dirençli ve duyarlı türlerin genom boyutları sırasıyla 3.9 Mb ve 3.2 Mb olarak saptanmıştır. Dirençli suşlarda antimikrobiyal ajanlara dirençle ilişkili olduğu düşünülen 52 gen tanımlanmıştır. Dirençli suşlarda dikkat çekici şekilde bu 52 direnç geninin 45’i direnç adası olarak adlandırılan bir bölgede toplanmıştır. Bu ada da şimdiye kadar bir bakteride tanımlanan en büyük direnç adasıdır. Direnç adasına ek olarak, dirençli suşlarda antimikrobiyal ajanlara dirençle ilişkili efluks pompaları da tanımlanmıştır. Bu derleme A.baumannii’nin direnç mekanizmaları hakkındaki bilgilerimizi tazeleyebilir; ancak onun devrimi gelecekte de devam edecektir.

Antibiotic resistance mechanisms of Acinetobacter Baumannii

Acinetobacter baumannii is the most relevant human pathogen within the genus. This opportunistic human pathogen causes a wide variety of serious infections mostly in compromised patients and it has the ability to develop resistance to new antibiotics extremely rapidly. Carbapenems have been the choice of treatment for A.baumannii infections until recent years. But many clinical isolates of A.baumannii are now resistant to all conventional antimicrobial agents, including carbapenems. Some of the most important recent advances in understanding of resistance in Acinetobacter have come from recent comparison of genomic analysis of resistant strains with susceptible ones. Assembly of the whole genome sequences has estimated genome size of 3.9 and 3.2 Mb for strains resistant and susceptible, respectively. Resistant isolates were found to encode 52 genes predicted to be associated with resistance to antimicrobial agents. Remarkably, 45 of the 52 resistance genes were clustered in a resistance island which is the largest resistance island identified in any bacterial species to date. In addition to the resistance island, efflux pumps associated with resistance to antimicrobial agents in resistant strains were identified. This review may be refresh our knowledge about resistance mechanisms of A.baumannii but its revolution will continue in the future.

___

  • 1. Afzal-Shah M, Woodford N, Livermore DM. Characterization of OXA-25, OXA-26, and OXA-27 molecular class D beta-lactamases associated with carbapenem resistance in clinical isolates of Acinetobacter baumannii, Antimicrob Agents Chemother 2001;45(2):583-8. http://dx.doi.org/10.1128/AAC.45.2.583-588.2001 PMid:11158758 PMCid:90330
  • 2. Agersø Y, Guardabassi L. Identification of Tet 39, a novel class of tetracycline resistance determinant in Acinetobacter spp. of environmental and clinical origin, J Antimicrob Chemother 2005;55(4):566-9. http://dx.doi.org/10.1093/jac/dki051 PMid:15761075
  • 3. Agodi A, Zarrilli R, Barchitta M et al. Alert surveillance of intensive care unit-acquired Acinetobacter infections in a Sicilian hospital, Clin Microbiol Infect 2006;12(3):241-7. http://dx.doi.org/10.1111/j.1469-0691.2005.01339.x PMid:16451411
  • 4. Amyes SGB, Young HK. Mechanisms of antibiotic resistance in Acinetobacter spp. genetic of resistance, “Bergogne-Bérézin E, Joly Guillou ML, Towner KJ (eds). Acinetobacter, Microbiology, Epidemiology, Infections, Management” kitabında s.185-223, CRC Press, Boca Raton (1996).
  • 5. Barcenilla Gaite F, Jover-Saenz A, Vallverdú Vidal M, Castellana Perello D. [New therapeutic options for the treatment of multiresistant bacteria in the ICU], Rev Esp Quimioter 2008;21(Spec 1):9-13.
  • 6. Bonomo RA, Szabo D. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa, Clin Infect Dis 2006;43(Suppl 2):S49-56. http://dx.doi.org/10.1086/504477 PMid:16894515
  • 7. Brown S, Amyes S. OXA (beta)-lactamases in Acinetobacter: the story so far, J Antimicrob Chemother 2006;57(1):1-3. http://dx.doi.org/10.1093/jac/dki425 PMid:16332731
  • 8. Chau SL, Chu YW, Houang ET. Novel resistance-nodulation-cell division efflux system AdeDE in Acinetobacter genomic DNA group 3, Antimicrob Agents Chemother 2004;48(10):4054-5. http://dx.doi.org/10.1128/AAC.48.10.4054-4055.2004 PMid:15388479 PMCid:521926
  • 9. Chopade BA, Wise PJ, Towner KJ. Plasmid transfer and behaviour in Acinetobacter calcoaceticus EBF65/65, J Gen Microbiol 1985;131(10):2805-11. PMid:3851820
  • 10. Chu YW, Chau SL, Houang ET. Presence of active efflux systems AdeABC, AdeDE and AdeXYZ in different Acinetobacter genomic DNA groups, J Med Microbiol 2006;55(4):477-8. http://dx.doi.org/10.1099/jmm.0.46433-0 PMid:16534000
  • 11. Clark RB. Imipenem resistance among Acinetobacter baumannii: association with reduced expression of a 33-36 kDa outer membrane protein, J Antimicrob Chemother 1996;38(2):245-51. http://dx.doi.org/10.1093/jac/38.2.245 PMid:8877538
  • 12. Coelho J, Woodford N, Afzal-Shah M, Livermore D. Occurrence of OXA-58-like carbapenemases in Acinetobacter spp. collected over 10 years in three continents, Antimicrob Agents Chemother 2006;50(2):756-68. http://dx.doi.org/10.1128/AAC.50.2.756-758.2006 PMid:16436738 PMCid:1366923
  • 13. Da Silva GJ, Quinteira S, Bértolo E et al. Long-term dissemination of an OXA-40 carbapenemase-producing Acinetobacter baumannii clone in the Iberian Peninsula, J Antimicrob Chemother 2004; 54(1):255-8. http://dx.doi.org/10.1093/jac/dkh269 PMid:15190040
  • 14. del Mar Tomás M, Beceiro A, Pérez A et al. Cloning and functional analysis of the gene encoding the 33- to 36-kilodalton outer membrane protein associated with carbapenem resistance in Acinetobacter baumannii, Antimicrob Agents Chemother 2005; 49(12):5172-5.
  • 15. Dupont M, Pagès JM, Lafitte D, Siroy A, Bollet C. Identification of an OprD homologue in Acinetobacter baumannii, J Proteome Res 2005;4(6):2386-90. http://dx.doi.org/10.1021/pr050143q PMid:16335991
  • 16. Elisha BG, Steyn LM. Identification of an Acinetobacter baumannii gene region with sequence and organizational similarity to Tn2670, Plasmid 1991;25(2):96-104. http://dx.doi.org/10.1016/0147-619X(91)90020-W
  • 17. Fluit AC, Schmitz FJ. Resistance integrons and super-integrons, Clin Microbiol Infect 2004;10(4): 272-88. http://dx.doi.org/10.1111/j.1198-743X.2004.00858.x PMid:15059115
  • 18. Garnacho-Montero J, Ortiz-Leyba C, Jiménez-Jiménez FJ et al. Treatment of multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia (VAP) with intravenous colistin: a comparison with imipenem-susceptible VAP, Clin Infect Dis 2003;36(9):1111-8. http://dx.doi.org/10.1086/374337 PMid:12715304
  • 19. Gehrlein M, Leying H, Cullmann W, Wendt S, Opferkuch W. Imipenem resistance in Acinetobacter baumanii is due to altered penicillin-binding proteins, Chemotherapy 1991;37(6):405-12. http://dx.doi.org/10.1159/000238887 PMid:1760939
  • 20. Goic-Barisic I, Tonkic M. The review of carbapenem resistance in clinical isolates of Acinetobacter baumannii, Acta Med Croatica 2009;63(4):285-96. PMid:20034329
  • 21. Gordon NC, Wareham DW. Multidrug-resistant Acinetobacter baumannii: mechanisms of virulence and resistance, Int J Antimicrob Agents 2010;35(3):219-26. http://dx.doi.org/10.1016/j.ijantimicag.2009.10.024 PMid:20047818
  • 22. Hall RM, Collis CM. Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination, Mol Microbiol 1995;15(4):593-600. http://dx.doi.org/10.1111/j.1365-2958.1995.tb02368.x
  • 23. Héritier C, Poirel L, Lambert T, Nordmann P. Contribution of acquired carbapenem-hydrolyzing oxacillinases to carbapenem resistance in Acinetobacter baumannii, Antimicrob Agents Chemother 2005;49(8):3198-202. PMid:16048925 PMCid:1196226
  • 24. Héritier C, Poirel L, Nordmann P. Cephalosporinase over-expression resulting from insertion of ISAba1 in Acinetobacter baumannii, Clin Microbiol Infect 2006;12(2):123-30. http://dx.doi.org/10.1111/j.1469-0691.2005.01320.x PMid:16441449
  • 25. Houang ET, Chu YW, Lo WS, Chu KY, Cheng AF. Epidemiology of rifampin ADP-ribosyltransferase (arr-2) and metallo-beta-lactamase (blaIMP-4) gene cassettes in class 1 integrons in Acinetobacter strains isolated from blood cultures in 1997 to 2000, Antimicrob Agents Chemother 2003;47(4):1382-90. http://dx.doi.org/10.1128/AAC.47.4.1382-1390.2003 PMid:12654674 PMCid:152494
  • 26. Huang ZM, Mao PH, Chen Y, Wu L, Wu J. [Study on the molecular epidemiology of SHV type beta-lactamase-encoding genes of multiple-drug-resistant Acinetobacter baumannii], Zhonghua Liu Xing Bing Xue Za Zhi 2004;25(5):425-7. PMid:15231171
  • 27. Huys G, Cnockaert M, Vaneechoutte M et al. Distribution of tetracycline resistance genes in genotypically related and unrelated multiresistant Acinetobacter baumannii strains from different European hospitals, Res Microbiol 2005;156(3):348-55. http://dx.doi.org/10.1016/j.resmic.2004.10.008 PMid:15808938
  • 28. Ko KS, Suh JY, Kwon KT et al. High rates of resistance to colistin and polymyxin B in subgroups of Acinetobacter baumannii isolates from Korea, J Antimicrob Chemother 2007;60(5):1163-7. http://dx.doi.org/10.1093/jac/dkm305 PMid:17761499
  • 29. Lee K, Kim CK, Hong SG et al. Characteristics of clinical isolates of Acinetobacter genomospecies 10 carrying two different metallo-beta-lactamases, Int J Antimicrob Agents 2010;36(3):259-63. http://dx.doi.org/10.1016/j.ijantimicag.2010.05.018 PMid:20599361
  • 30. Lee JK, Lee YS, Park YK, Kim BS. Mutations in the gyrA and parC genes in ciprofloxacin-resistant clinical isolates of Acinetobacter baumannii in Korea, Microbiol Immunol 2005;49(7):647-53. PMid:16034208
  • 31. Levin AS. Multiresistant Acinetobacter infections: a role for sulbactam combinations in overcoming an emerging worldwide problem, Clin Microbiol Infect 2002;8(3):144-53. http://dx.doi.org/10.1046/j.1469-0691.2002.00415.x PMid:12010169
  • 32. Limansky AS, Mussi MA, Viale AM. Loss of a 29-kilodalton outer membrane protein in Acinetobacter baumannii is associated with imipenem resistance, J Clin Microbiol 2002;40(12): 4776-8. http://dx.doi.org/10.1128/JCM.40.12.4776-4778.2002 PMid:12454194 PMCid:154632
  • 33. Magnet S, Courvalin P, Lambert T. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454, Antimicrob Agents Chemother 2001;45(12):3375-80. http://dx.doi.org/10.1128/AAC.45.12.3375-3380.2001 PMid:11709311 PMCid:90840
  • 34. Mak JK, Kim MJ, Pham J, Tapsall J, White PA. Antibiotic resistance determinants in nosocomial strains of multidrug-resistant Acinetobacter baumannii, J Antimicrob Chemother 2009;63(1):47-54. http://dx.doi.org/10.1093/jac/dkn454 PMid:18988680
  • 35. Marqué S, Poirel L, Héritier C et al. Regional occurrence of plasmid-mediated carbapenem-hydrolyzing oxacillinase OXA-58 in Acinetobacter spp. in Europe, J Clin Microbiol 2005;43(9):4885-8.
  • 36. Merkier AK, Catalano M, Ramírez MS et al. Polyclonal spread of bla(OXA-23) and bla(OXA-58) in Acinetobacter baumannii isolates from Argentina, J Infect Dev Ctries 2008;2(3):235-40. PMid:19738357
  • 37. Merkier AK, Centrón D. bla(OXA-51)-type beta-lactamase genes are ubiquitous and vary within a strain in Acinetobacter baumannii, Int J Antimicrob Agents 2006;28(2):110-3. http://dx.doi.org/10.1016/j.ijantimicag.2006.03.023 PMid:16844350
  • 38. Mussi MA, Limansky AS, Viale AM. Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of Acinetobacter baumannii: natural insertional inactivation of a gene encoding a member of a novel family of beta-barrel outer membrane proteins, Antimicrob Agents Chemother 2005;49(4):1432-40. http://dx.doi.org/10.1128/AAC.49.4.1432-1440.2005 PMid:15793123 PMCid:1068641
  • 39. Naas T, Coignard B, Carbonne A et al. French Nosocomial Infection Early Warning Investigation and Surveillance Network. VEB-1 extended-spectrum beta-lactamase-producing Acinetobacter baumannii, France, Emerg Infect Dis 2006; 12(8):1214-22. PMid:16965700
  • 40. Nagano N, Nagano Y, Cordevant C, Shibata N, Arakawa Y. Nosocomial transmission of CTX-M-2 beta-lactamase-producing Acinetobacter baumannii in a neurosurgery ward, J Clin Microbiol 2004;42(9):3978-84. http://dx.doi.org/10.1128/JCM.42.9.3978-3984.2004 PMid:15364979 PMCid:516360
  • 41. Nemec A, Dolzani L, Brisse S, van den Broek P, Dijkshoorn L. Diversity of aminoglycoside-resistance genes and their association with class 1 integrons among strains of pan-European Acinetobacter baumannii clones, J Med Microbiol 2004;53(12):1233-40. http://dx.doi.org/10.1099/jmm.0.45716-0 PMid:15585503
  • 42. Paton R, Miles RS, Hood J, Amyes SG. ARI-1: Beta-lactamase-mediated imipenem resistance in Acinetobacter baumannii, Int J Antimicrob Agents 1993;2(2):81-7. http://dx.doi.org/10.1016/0924-8579(93)90045-7
  • 43. Poirel L, Cabanne L, Vahaboglu H, Nordmann P. Genetic environment and expression of the extended-spectrum beta-lactamase blaPER-1 gene in gram-negative bacteria, Antimicrob Agents Chemother 2005;49(5):1708-13. http://dx.doi.org/10.1128/AAC.49.5.1708-1713.2005 PMid:15855485 PMCid:1087670
  • 44. Poirel L, Marqué S, Héritier C, Segonds C, Chabanon G, Nordmann P. OXA-58, a novel class D {beta}-lactamase involved in resistance to carbapenems in Acinetobacter baumannii, Antimicrob Agents Chemother 2005;49(1):202-8. http://dx.doi.org/10.1128/AAC.49.1.202-208.2005 PMid:15616297 PMCid:538857
  • 45. Poirel L, Menuteau O, Agoli N, Cattoen C, Nordmann P. Outbreak of extended-spectrum beta-lactamase VEB-1-producing isolates of Acinetobacter baumannii in a French hospital, J Clin Microbiol 2003;41(8):3542-7. http://dx.doi.org/10.1128/JCM.41.8.3542-3547.2003 PMid:12904353 PMCid:179787
  • 46. Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology, Clin Microbiol Infect 2006;12(9):826-36. http://dx.doi.org/10.1111/j.1469-0691.2006.01456.x PMid:16882287
  • 47. Poirel L, Nordmann P. Genetic structures at the origin of acquisition and expression of the carbapenem-hydrolyzing oxacillinase gene blaOXA-58 in Acinetobacter baumannii, Antimicrob Agents Chemother 2006;50(4):1442-8. http://dx.doi.org/10.1128/AAC.50.4.1442-1448.2006 PMid:16569863 PMCid:1426978
  • 48. Poole K. Efflux-mediated multiresistance in Gram-negative bacteria, Clin Microbiol Infect 2004; 10(1):12-26. http://dx.doi.org/10.1111/j.1469-0691.2004.00763.x PMid:14706082
  • 49. Ribera A, Roca I, Ruiz J, Gibert I, Vila J. Partial characterization of a transposon containing the tet(A) determinant in a clinical isolate of Acinetobacter baumannii, J Antimicrob Chemother 2003;52(3):477-80. http://dx.doi.org/10.1093/jac/dkg344 PMid:12888597
  • 50. Rodríguez-Martínez JM, Nordmann P, Ronco E, Poirel L. Extended-spectrum cephalosporinase in Acinetobacter baumannii, Antimicrob Agents Chemother 2010;54(8):3484-8. PMid:20547808 PMCid:2916328
  • 51. Segal H, Garny S, Elisha BG. Is IS(ABA-1) customized for Acinetobacter? FEMS Microbiol Lett 2005;243(2):425-9. http://dx.doi.org/10.1016/j.femsle.2005.01.005 PMid:15686845
  • 52. Seward RJ, Lambert T, Towner KJ. Molecular epidemiology of aminoglycoside resistance in Acinetobacter spp., J Med Microbiol 1998;47(5):455-62. http://dx.doi.org/10.1099/00222615-47-5-455 PMid:9879947
  • 53. Shi WF, Jiang JP, Mi ZH. Relationship between antimicrobial resistance and aminoglycoside-modifying enzyme gene expressions in Acinetobacter baumannii, Chin Med J 2005;118(2):141-5.
  • 54. Siroy A, Molle V, Lemaître-Guillier C et al. Channel formation by CarO, the carbapenem resistance-associated outer membrane protein of Acinetobacter baumannii, Antimicrob Agents Chemother 2005;49(12):4876-83. http://dx.doi.org/10.1128/AAC.49.12.4876-4883.2005 PMid:16304148 PMCid:1315959
  • 55. Spence RP, Towner KJ. Frequencies and mechanisms of resistance to moxifloxacin in nosocomial isolates of Acinetobacter baumannii, J Antimicrob Chemother 2003;52(4):687-90. http://dx.doi.org/10.1093/jac/dkg424 PMid:12951327
  • 56. Thapa B, Tribuddharat C, Rugdeekha S, Techachaiwiwat W, Srifuengfung S, Dhiraputra C. Rifampin resistance in carbapenem-resistant Acinetobacter baumannii in Siriraj Hospital, Thailand, Nepal Med Coll J 2009;11(4):232-7. PMid:20635600
  • 57. Towner JK. Acinetobacter molecular biology, “Gerischer U (ed). Molecular Basis of Antibiotic Resistance in Acinetobacter” kitabında s.321-43, Caistr Academic Press, Norfolk, UK (2008).
  • 58. Tsakris A, Ikonomidis A, Pournaras S et al. VIM-1 metallo-beta-lactamase in Acinetobacter baumannii, Emerg Infect Dis 2006;12(6):981-3. PMid:16707056
  • 59. Turton JF, Ward ME, Woodford N et al. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii, FEMS Microbiol Lett 2006;258(1):72-7. http://dx.doi.org/10.1111/j.1574-6968.2006. 00195.x PMid:16630258
  • 60. Turton JF, Woodford N, Glover J, Yarde S, Kaufmann ME, Pitt TL. Identification of Acinetobacter baumannii by detection of the blaOXA-51-like carbapenemase gene intrinsic to this species, J Clin Microbiol 2006;44(8):2974-6. http://dx.doi.org/10.1128/JCM.01021-06 PMid:16891520 PMCid:1594603
  • 61. Urban C, Go E, Mariano N, Rahal JJ. Interaction of sulbactam, clavulanic acid and tazobactam with penicillin binding proteins of imipenem-resistant and susceptible Acinetobacter baumannii, FEMS Microbiol Lett 1995;125(2):193-7. http://dx.doi.org/10.1111/j.1574-6968.1995.tb07357.x
  • 62. Vahaboglu H, Budak F, Kasap M et al. High prevalence of OXA-51-type class D beta-lactamases among ceftazidime-resistant clinical isolates of Acinetobacter spp.: co-existence with OXA-58 in multiple centres, J Antimicrob Chemother 2006;58(3):537-42. http://dx.doi.org/10.1093/jac/dkl273 PMid:16816400
  • 63. Vahaboglu H, Öztürk R, Aygün G et al. Widespread detection of PER-1-type extended-spectrum beta-lactamases among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey: a nationwide multicenter study, Antimicrob Agents Chemother 1997;41(10):2265-9. PMid:9333059 PMCid:164104
  • 64. Vila J, Ruiz J, Goñi P, Jimenez de Anta T. Quinolone-resistance mutations in the topoisomerase IV parC gene of Acinetobacter baumannii, J Antimicrob Chemother 1997;39(6):757-62. http://dx.doi.org/10.1093/jac/39.6.757 PMid:9222045
  • 65. Vila J, Ruiz J, Goñi P, Marcos A, Jimenez de Anta T. Mutation in the gyrA gene of quinolone-resistant clinical isolates of Acinetobacter baumannii, Antimicrob Agents Chemother 1995;39(5):1201-3. PMid:7625818 PMCid:162713
  • 66. Walther-Rasmussen, Hoiby N. OXA-type carbapenemases, J Antimicrob Chemother 2006;57(3):373-83. http://dx.doi.org/10.1093/jac/dki482 PMid:16446375
  • 67. Wang H, Sun HL, Ning YZ et al. Molecular mechanism of multiple-drug and pan-drug resistance among Acinetobacter species, Zhonghua Yi Xue Za Zhi 2006;86(1):17-22. PMid:16606529
  • 68. Woodford N, Ellington MJ, Coelho JM et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp., Int J Antimicrob Agents 2006;27(4):351-3. http://dx.doi.org/10.1016/j.ijantimicag.2006.01.004 PMid:16564159
  • 69. Yong D, Choi YS, Roh KH et al. Increasing prevalence and diversity of metallo-beta-lactamases in Pseudomonas spp., Acinetobacter spp., and Enterobacteriaceae from Korea, Antimicrob Agents Chemother 2006;50(5):1884-6. http://dx.doi.org/10.1128/AAC.50.5.1884-1886.2006 PMid:16641469 PMCid:1472216
  • 70. Yoon J, Urban C, Terzian C, Mariano N, Rahal JJ. In vitro double and triple synergistic activities of polymyxin B, imipenem, and rifampin against multidrug-resistant Acinetobacter baumannii, Antimicrob Agents Chemother 2004;48(3):753-7. http://dx.doi.org/10.1128/AAC.48.3.753-757.2004 PMid:14982760 PMCid:353107
  • 71. Zarrilli R, Giannouli M, Tomasone F, Triassi M, Tsakris A. Carbapenem resistance in Acinetobacter baumannii: the molecular epidemic features of an emerging problem in health care facilities, J Infect Dev Ctries 2009;3(5):335-41. http://dx.doi.org/10.3855/jidc.240
ANKEM Dergisi-Cover
  • ISSN: 1301-3114
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1986
  • Yayıncı: Antibiyotik ve Kemoterapi Derneği
Sayıdaki Diğer Makaleler

Yanığa bağlı infeksiyonlu hastalarda antibiyotik kullanımı

Bülent A. BEŞİRBELLİOĞLU

Akut piyelonefritli 133 hastanın değerlendirilmesi

Meltem TAŞBAKAN IŞIKGÖZ, Şebnem ŞENOL, ADNAN ŞİMŞİR, Hüsnü PULLUKÇU, Hasip KAHRAMAN, Oğuz Reşat SİPAHİ, Tansu YAMAZHAN, Bilgin ARDA, Erkan KISMALI, Alper TÜNGER, Sercan ULUSOY

Yoğun bakım birimlerinden izole edilen gram pozitif koklarda daptomisin duyarlılığı

Pınar ŞAMLIOĞLU, Gülfem ECE, Sabri ATALAY, Şükran KÖSE

Yoğun bakımda izole edilen pseudomonas spp. suşlarında metallo-beta-laktamaz sıklığının araştırılması

Kutbettin DEMİRDAĞ, Mehmet ÇABALAK, Müge ÖZGÜLER

Antimikrobiyal direnç ve önleme politikaları

Halis AKALIN

İki yıllık süreçte yapılan modifiye hodge testi sonuçlarının irdelenmesi

HİKMET EDA ALIŞKAN, Şule ÇOLAKOĞLU, Ebru BOSTANOĞLU, Tuba TURUNÇ, Jülide Sedef GÖÇMEN

Acinetobacter Baumannii’nin antibiyotik direnç mekanizmaları

İhsan Hakkı ÇİFTÇİ, Gülşah AŞIK

Staphylococcus Aureus’da metisilin direncinin saptanmasında disk difüzyon, oksasilin agar tarama, mikrodilüsyon ve PBP2a lateks aglütinasyon testlerinin karşılaştırılması

Ahmet VURAL, İlhan AFŞAR, Nükhet KURULTAY, Mustafa DEMİRCİ

Genotip 1 ile infekte kronik hepatit c hastalarında peginterferon ve ribavirin tedavisinin etkinliği: düşük ve yüksek viral yük etkisinin karşılaştırılması

Ali Ilgın OLUT, Alpay ARI, Onur ÖZGENÇ, Meltem AVCI, Sibel CAYMAZ ÖZSU

Yanığa bağlı infeksiyonlarda antibiyotik kullanımı

MEHMET GEYLANİ ÖZOK