Kortiko-hipokampal Devre: Beynin Haritalama ve Deklaratif Bellek Merkezi

Dış dünyadan duyu sistemleri aracılığıyla algılanan uyaranlar, ilgili birincil kortekse ulaştıktan sonra çeşitli asosiyasyon kortekslerine iletilir. Uzunsüreli bellek olarak kodlanacak veya süregelen hipokampal hesaplamalarda kullanılacak bilgiler, buradan sırasıyla perirhinal/parahipokampal(postrhinal) korteks ve entorhinal korteks üzerinden hipokampusun dentat girus bölgesine aktarılır. Asosiyasyon kortekslerini ortalama 3-4 sinapsile hipokampuse bağlayan bu kortiko-hipokampal devre, deklaratif (eksplisit) belleğin temel nöronal altyapısını oluşturur. Bu nöronal sistemindış dünyadan en uzak yapısı olan hipokampus, uzun süreli bellek edinimi ve konsolidasyonunu gerçekleştirir. Hipokampus esasen çeşitli kortikalbilgileri birleştirip, ortaya anlamlı bütünler çıkaran bir haritalama merkezidir. Uzun süreli belleğe dönüştürülecek semantik bilgileri bir araya getirenhipokampus, bir belleksel (mnemonic) navigasyon sistemi gibi çalışır. Hipokampusun geniş kapsamlı haritalama ve navigasyon yetisini oluşturannöronal altyapı, aslında mekansal bellek için evrilmiştir. Hipokampusun CA3 ve CA1 alt bölgelerinde bulunan ana tip glutamaterjik hücrelerin, belirlibir alan içinde sabit konumlarını kodlayan yer (belirleme) hücreleri (place cells) oldukları keşfedilmiştir. Görece yakın zamanda, hipokampuse enyoğun sinaptik girdiyi sağlayan entorhinal kortekste de benzer konum hücreleri (grid cells) bulunmuştur. Bu bakımdan, dış dünyadan farklı duyusistemleri aracılığıyla, beynin sinaptik bakımdan iç kısımlarına aktarılan girdilerin, entorhinal korteksten itibaren anlamlı bir bütün oluşturmayabaşladığı düşünülmektedir. Buna karşın, entorhinal bölgeye en yoğun girdiyi sağlayan perirhinal ve parahipokampal korteksin işlevleri yeterincearaştırılmamıştır. Bunun önemli bir nedeni bu bölgelerde, yer belirleme hücreleri gibi, dış dünya ile ilişkisi birebir gözlemlenen nöron tiplerininkeşfedilmemiş olmasıdır. Bununla beraber, in vivo elektrofizyolojik kayıtlarda oldukça sessiz (inaktif) olan perirhinal korteksin hangi girdilerin uzunsüreli belleğe dönüştürülmek üzere hipokampuse aktarılacağını belirleyen kritik bir filtreleme istasyonu olduğu anlaşılmaktadır. Bu derleme, beyninharitalama ve deklaratif bellek merkezi olan kortikal-hipokampal devreyi oluşturan yapıların nöroanatomik ilişkilerini, monosinaptik bağlantılarını,kendilerine özgü elektrofizyolojik özelliklerini ve bellek süreçlerindeki işlevlerini incelemektedir.

The Cortico-hippocampal Circuit: The Brain’s Center for Mapping and Declarative Memory

Perceived stimuli from the external world are relayed to various association cortices after they reach their respective primary cortices. Information to be encoded as long-term memory is relayed to the dentate gyrus via perirhinal/parahippocampal and entorhinal cortices. This cortico-hippocampal circuit connecting the association cortices to the hippocampus via 3-4 synapses, forms the neuronal basis of declarative memory. Hippocampus, the most distant structure of this neuronal system from the external world, carries out the acquisition and consolidation of long-term memories. In fact, hippocampus is a mapping station that associates various cortical information to produce meaningful wholes. Putting together the semantic information to be encoded as long-term memory, hippocampus works as a mnemonic navigation system. The neuronal mechanism underlying this wide-ranging mapping capacity has evolved for spatial navigation. Principal glutamatergic cells of the CA3 and CA1 regions of hippocampus have been identified to be place cells. Similar location-encoding cells have been found in the entorhinal cortex, which provides the bulk of input to the hippocampus. Accordingly, it is theorized that inputs relayed to the central parts of the brain from the external world through different sensory systems, start forming meaningful gestalts once at the entorhinal cortex. In contrary, the perirhinal/parahippocampal cortex, providing the densest input to the entorhinal region, has not been sufficiently investigated. An important reason is that in these regions, no neuronal types showing a direct relationship with the external world, such as location-encoding cells, have been discovered. However, it is understood that the perirhinal cortex, remaining very silent in in vivo recordings, is a critical filtering station determining the inputs to be relayed to the hippocampus. This review focuses on the neuroanatomical correlates, monosynaptic connections, unique electrophysiological properties and differential roles in memory processes of the structures that make up the cortico-hippocampal circuit-brain’s center for mapping and declarative memory.

___

  • 1. Sherman MS, Guillery RW. Exploring the thalamus and its role in cortical function. Cambridge; London: The MIT Press; 2006.
  • 2. Johnson DM, Illig KR, Behan M, et al. New features of connectivity in piriform cortex visualized by intracellular injection of pyramidal cells suggest that “primary” olfactory cortex functions like “association” cortex in other sensory systems. J Neurosci. 2000;20:6974-6982.
  • 3. Nieuwenhuys R. The insular cortex: a review. Prog Brain Res. 2012;195:123-63.
  • 4. Squire LR, Zola-Morgan S. The medial temporal lobe memory system. Science. 1991;253:1380-1386.
  • 5. Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 1957;20:11-21.
  • 6. Corkin S. Lasting Consequences of Bilateral Medial Temporal Lobectomy: Clinical Course and Experimental Findings in H.M. Semin Neurol. 1984;4:249-259.
  • 7. Schmolck H, Kensinger EA, Corkin S, et al. Semantic knowledge in patient H.M. and other patients with bilateral medial and lateral temporal lobe lesions. Hippocampus. 2002;12:520-533.
  • 8. Eichenbaum H. A cortical-hippocampal system for declarative memory. Nat Rev Neurosci. 2000;1:41-50.
  • 9. Squire LR, Stark CE, Clark RE. The medial temporal lobe. Annu Rev Neurosci. 2004;27:279-306.
  • 10. Squire LR, Wixted JT, Clark RE. Recognition memory and the medial temporal lobe: a new perspective. Nat Rev Neurosci. 2007;8:872-883.
  • 11. Pennartz CM, Uylings HB, Barnes CA, et al.Memory reactivation and consolidation during sleep: from cellular mechanisms to human performance. Prog Brain Res. 2002;138:143-166.
  • 12. Buzsáki G. Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience. 1989;31:551-570.
  • 13. Amaral D, Lavenex P, Chapter 3. Hippocampal neuroanatomy. In: Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J, editors. The Hippocampus Book. New York: Oxford University Press; 2006.
  • 14. Eichenbaum H, Schoenbaum G, Young B, et al. Functional organization of the hippocampal memory system. Proc Natl Acad Sci U S A. 1996;93:13500- 13507.
  • 15. Atkinson RC, Shiffrin RM. Human memory: A proposed system and its control processes. The psychology of learning and motivation: II. Oxford, England: Academic Press; 1968.
  • 16. O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971;34:171-175.
  • 17. Taube JS, Muller RU, Ranck JB, Jr. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci. 1990;10:420-435.
  • 18. Hafting T, Fyhn M, Molden S, et al. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005;436:801-806.
  • 19. Fyhn M, Molden S, Witter MP, et al. Spatial representation in the entorhinal cortex. Science. 2004;305:1258-1264.
  • 20. Salz DM, Tiganj Z, Khasnabish S, et al. Time Cells in Hippocampal Area CA3. J Neurosci. 2016;36:7476-7484.
  • 21. Howard MW, MacDonald CJ, Tiganj Z, et al. A unified mathematical framework for coding time, space, and sequences in the hippocampal region. J Neurosci. 2014 Mar 26;34:4692-4707.
  • 22. Eichenbaum H. Time cells in the hippocampus: a new dimension for mapping memories. Nat Rev Neurosci. 2014;15:732-744.
  • 23. Eichenbaum H. On the Integration of Space, Time, and Memory. Neuron. 2017;95(5):1007-1018.
  • 24. Dragoi G, Buzsaki G. Temporal encoding of place sequences by hippocampal cell assemblies. Neuron. 2017;95:1007-1018.
  • 25. Kreiman G, Fried I, Koch C. Single-neuron correlates of subjective vision in the human medial temporal lobe. Proc Natl Acad Sci U S A. 2002;99:8378- 8383.
  • 26. Logothetis NK, Pauls J. Psychophysical and physiological evidence for viewer-centered object representations in the primate. Cereb Cortex. 1995;5:270-288.
  • 27. Llinás R. I of the Vortex: From Neurons to Self 2002.
  • 28. Konorski J. Integrative Activity of the Brain: An Interdisciplinary Approach: University of Chicago Press; 1967.
  • 29. Unal G, Apergis-Schoute J, Paré D. Associative properties of the perirhinal network. Cereb Cortex. 2012;22:1318-1332.
  • 30. Unal G, Pare JF, Smith Y, et al. Differential connectivity of short- vs. longrange extrinsic and intrinsic cortical inputs to perirhinal neurons. J Comp Neurol. 2013;521:2538-2550.
  • 31. Von Bonin G, Bailey P. The neocortex of Macaca mulatta. (Illinois Monogr. med. Sci., 5, No.4). Champaign, IL, US: University of Illinois Press; p. 1947- 1163.
  • 32. Deacon TW, Eichenbaum H, Rosenberg P, et al. Afferent connections of the perirhinal cortex in the rat. J Comp Neurol. 1983;220:168-190.
  • 33. Burwell RD, Witter MP, Amaral DG. Perirhinal and postrhinal cortices of the rat: a review of the neuroanatomical literature and comparison with findings from the monkey brain. Hippocampus. 1995;5:390-408.
  • 34. Burwell RD. Borders and cytoarchitecture of the perirhinal and postrhinal cortices in the rat. J Comp Neurol. 2001;437:17-41.
  • 35. Burwell RD, Amaral DG. Perirhinal and postrhinal cortices of the rat: interconnectivity and connections with the entorhinal cortex. J Comp Neurol. 1998;391:293-321.
  • 36. Thangavel R, Van Hoesen GW, Zaheer A. Posterior parahippocampal gyrus pathology in Alzheimer’s disease. Neuroscience. 2008;154:667-676.
  • 37. Witter MP, Van Hoesen GW, Amaral DG. Topographical organization of the entorhinal projection to the dentate gyrus of the monkey. J Neurosci. 1989;9:216-228.
  • 38. Suzuki WA, Amaral DG. Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol. 1987;264:326-355.
  • 39. Amaral DG, Insausti R, Cowan WM. The entorhinal cortex of the monkey: I. Cytoarchitectonic organization. J Comp Neurol. 1987;264:326-355.
  • 40. Krimer LS, Hyde TM, Herman MM, et al. The entorhinal cortex: an examination of cyto- and myeloarchitectonic organization in humans. Cereb Cortex. 1997;7:722-731.
  • 41. Reagh ZM, Yassa MA. Object and spatial mnemonic interference differentially engage lateral and medial entorhinal cortex in humans. Proc Natl Acad Sci U S A. 2014;111:E4264-4273.
  • 42. Schultz H, Sommer T, Peters J. The Role of the Human Entorhinal Cortex in a Representational Account of Memory. Front Hum Neurosci. 2015;9:628.
  • 43. Maass A, Berron D, Libby LA, et al. Functional subregions of the human entorhinal cortex. Elife. 2015;4.
  • 44. Somogyi P. Hippocampus-intrinsic organisation. In: Shepherd GM, Grillner S, editors. Handbook of Brain Microcircuits. Oxford: Oxford University Press; 2010. p. 148-164.
  • 45. Klausberger T, Somogyi P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science. 2008;321:53-57.
  • 46. Unal G, Crump MG, Viney TJ, et al. Spatio-temporal specialization of GABAergic septo-hippocampal neurons for rhythmic network activity. Brain Struct Funct. 2018;223:2409-2432.
  • 47. Strange BA, Witter MP, Lein ES, et al. Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci. 2014;15:655-669.
  • 48. Burwell RD, Amaral DG. Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. J Comp Neurol. 1998;398:179-205.
  • 49. Goodale MA, Milner AD. Separate visual pathways for perception and action. Trends Neurosci. 1992;15:20-25.
  • 50. Lavenex P, Suzuki WA, Amaral DG. Perirhinal and parahippocampal cortices of the macaque monkey: Intrinsic projections and interconnections. J Comp Neurol. 2004;472:371-394.
  • 51. Aggleton JP, Christiansen K. Chapter 4-The subiculum: the heart of the extended hippocampal system. In: O’Mara S, Tsanov M, editors. Progress in brain research. 219: Elsevier; 2015. p. 65-82.
  • 52. Mohedano-Moriano A, Pro-Sistiaga P, Arroyo-Jimenez MM, et al. Topographical and laminar distribution of cortical input to the monkey entorhinal cortex. J Anat. 2007;211:250-260.
  • 53. Rolls ET. Memory systems in the brain. Annu Rev Psychol. 2000;51:599-630. 54. Rolls E. The mechanisms for pattern completion and pattern separation in the hippocampus. Front Syst Neurosci. 2013;7:74.
  • 55. O’Keefe J. Place units in the hippocampus of the freely moving rat. Exp Neurol. 1976;51:78-109.
  • 56. Yartsev MM, Ulanovsky N. Representation of Three-Dimensional Space in the Hippocampus of Flying Bats. Science. 2013;340:367-372.
  • 57. Viney TJ, Salib M, Joshi A, et al. Shared rhythmic subcortical GABAergic input to the entorhinal cortex and presubiculum. Elife. 2018;7. pii: e34395.
  • 58. Buzsaki G, Leung LW, Vanderwolf CH. Cellular bases of hippocampal EEG in the behaving rat. Brain Res. 1983;287:139-171.
  • 59. Unal G, Joshi A, Viney TJ, et al. Synaptic Targets of Medial Septal Projections in the Hippocampus and Extrahippocampal Cortices of the Mouse. J Neurosci. 2015;35:15812-15826.
  • 60. Colgin LL. Rhythms of the hippocampal network. Nat Rev Neurosci. 2016;17:239-249.
  • 61. Vanderwolf CH. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol. 1969;26:407-418.
  • 62. Ekstrom AD, Caplan JB, Ho E, et al. Human hippocampal theta activity during virtual navigation. Hippocampus. 2005;15:881-889.
  • 63. Zhang H, Jacobs J. Traveling Theta Waves in the Human Hippocampus. J Neurosci. 2015;35:12477-12487.
  • 64. Nakashiba T, Buhl DL, McHugh TJ, et al. Hippocampal CA3 output is crucial for ripple-associated reactivation and consolidation of memory. Neuron. 2009;62:781-787.
  • 65. Buzsáki G. Hippocampal sharp waves: their origin and significance. Brain Res. 1986;398:242-252.
  • 66. Buzsáki G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus. 2015;25:1073-10188.
  • 67. Battaglia FP, Sutherland GR, McNaughton BL. Hippocampal sharp wave bursts coincide with neocortical “up-state” transitions. Learn Mem. 2004;11:697-704.
  • 68. Girardeau G, Benchenane K, Wiener SI, et al. Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci. 2009;12:1222- 1223.
  • 69. Roux L, Hu B, Eichler R, et al. Sharp wave ripples during learning stabilize the hippocampal spatial map. Nat Neurosci. 2017;20:845-853.
  • 70. Kovács KA, O’Neill J, Schoenenberger P, et al. Optogenetically Blocking Sharp Wave Ripple Events in Sleep Does Not Interfere with the Formation of Stable Spatial Representation in the CA1 Area of the Hippocampus. PLoS One. 2016;11:e0164675.
  • 71. Booth CA, Witton J, Nowacki J, et al. Altered Intrinsic Pyramidal Neuron Properties and Pathway-Specific Synaptic Dysfunction Underlie Aberrant Hippocampal Network Function in a Mouse Model of Tauopathy. J Neurosci. 2016;36:350-363.
  • 72. Witton J, Staniaszek LE, Bartsch U, et al. Disrupted hippocampal sharp-wave ripple-associated spike dynamics in a transgenic mouse model of dementia. J Physiol. 2016;594:4615-4630.
  • 73. Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes. Nat Rev Neurosci. 2012;13:407-420.
  • 74. Karlocai MR, Kohus Z, Kali S, et al. Physiological sharp wave-ripples and interictal events in vitro: what’s the difference? Brain. 2014;137:463-485.
  • 75. Gulyas AI, Freund TT. Generation of physiological and pathological high frequency oscillations: the role of perisomatic inhibition in sharp-wave ripple and interictal spike generation. Curr Opin Neurobiol. 2015;31:26-32.
  • 76. Köhling R, Staley K. Network mechanisms for fast ripple activity in epileptic tissue. Epilepsy Res. 2011;97:318-323.
  • 77. Zijlmans M, Jiruska P, Zelmann R et al. High-frequency oscillations as a new biomarker in epilepsy. High-Frequency Oscillations as a New Biomarker in Epilepsy. Ann Neurol. 2012;71:169-178.
  • 78. Detoledo-Morrell L, Sullivan MP, Morrell F, et al. Alzheimer’s disease: in vivo detection of differential vulnerability of brain regions. Neurobiol Aging. 1997;18:463-468.
  • 79. Dickerson BC, Goncharova I, Sullivan MP, Forchetti C, Wilson RS, Bennett DA, et al. MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer’s disease. Neurobiol Aging. 2001;22:747-754.
  • 80. de Toledo-Morrell L, Goncharova I, Dickerson B, et al. From healthy aging to early Alzheimer’s disease: in vivo detection of entorhinal cortex atrophy. Ann N Y Acad Sci. 2000;911:240-253.
  • 81. deToledo-Morrell L, Stoub TR, Bulgakova M, et al. MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiol Aging. 2004;25:1197-1203.
  • 82. Gillespie AK, Jones EA, Huang Y. Approaching Alzheimer’s disease from a network level. Oncotarget. 2017;8:9003-9004.
  • 83. Baddeley AD, Hitch G. Working Memory. In: Bower GH, editor. Psychology of Learning and Motivation. 8: Academic Press; 1974. p. 47-89.
  • 84. Miller EK, Cohen JDAn integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167-202.
  • 85. Bangasser DA, Waxler DE, Santollo J, et al. Trace conditioning and the hippocampus: the importance of contiguity. J Neurosci. 2006;26:8702-8706.
  • 86. Morris RG, Anderson E, Lynch GS, et al. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature. 1986 Feb 27;319:774-776.
  • 87. McHugh TJ, Blum KI, Tsien JZ, et al. Impaired hippocampal representation of space in CA1-specific NMDAR1 knockout mice. Cell. 1996;87:1339-1349.
  • 88. Solstad T, Boccara CN, Kropff E, et al. Representation of geometric borders in the entorhinal cortex. Science. 2008;322:1865-1868.
  • 89. Giocomo LM, Stensola T, Bonnevie T, et al. Topography of head direction cells in medial entorhinal cortex. Curr Biol. 2014;24:252-262.
  • 90. Kropff E, Carmichael JE, Moser M-B, Moser EI. Speed cells in the medial entorhinal cortex. Nature. 2015;523:419-424.
  • 91. Unal G, Paré JF, Smith Y, et al. Cortical inputs innervate calbindinimmunoreactive interneurons of the rat basolateral amygdaloid complex. J Comp Neurol. 2014;522:1915-1928.
  • 92. Tang Q, Burgalossi A, Ebbesen CL, et al. Pyramidal and stellate cell specificity of grid and border representations in layer 2 of medial entorhinal cortex. Neuron. 2014;84:1191-1197.
  • 93. Fernández G, Tendolkar I. The rhinal cortex: ‘gatekeeper’ of the declarative memory system. Trends Cogn Sci. 2006;10:358-362.
  • 94. Fell J, Klaver P, Lehnertz K, et al. Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling. Nat Neurosci. 2001;4:1259-1264.
  • 95. Brown MW, Aggleton JP. Recognition memory: what are the roles of the perirhinal cortex and hippocampus? Nat Rev Neurosci. 2001;2:51-61.
  • 96. Murray EA, Richmond BJ. Role of perirhinal cortex in object perception, memory, and associations. Curr Opin Neurobiol. 2001;11:188-193.
  • 97. Griffiths S, Scott H, Glover C, et al. Expression of long-term depression underlies visual recognition memory. Neuron. 2008;58:186-194.
  • 98. Samarth P, Ball JM, Unal G, et al. Mechanisms of memory storage in a model perirhinal network. rain Struct Funct. 2017;222:183-200.
  • 99. Miyashita Y. Inferior temporal cortex: where visual perception meets memory. Annu Rev Neurosci. 1993;16:245-263.
  • 100. Gross CG. Single neuron studies of inferior temporal cortex. Neuropsychologia. 2008;46:841-852.
Ankara Üniversitesi Tıp Fakültesi Mecmuası-Cover
  • Başlangıç: 1947
  • Yayıncı: Erkan Mor
Sayıdaki Diğer Makaleler

Obstrüktif Uyku Apnesi Sendromu Araştırılan Hastalarda Fizik Muayenenin Önemi

Hazan BAŞAK, Nurlan İSAYEV, Süha BETON, Yücel ANADOLU, Selçuk MÜLAZIMOĞLU

Cezaevinde Annesi ile Birlikte Kalan Çocukların Gelişimlerinin Karşılaştırılmalı Olarak Değerlendirilmesi

Ender DURUALP, Bahar ÇUHACI ÇAKIR, Nesil SAĞIN KÜÇÜK, Aysun KARA UZUN, Alev ŞAHİNÖZ KAYA

Kulak Burun Boğaz Hastalıkları Kliniğinde Akut Dispne ile Yatan Hastaların Klinik Özellikleri, Tanı, Tedavi Yaklaşımları

Zahide ÇİLER BÜYÜKATALAY, Gürsel DURSUN, Hatice Seçil AKYILDIZ

Malign Biliyer Tıkanıklıklarda Perkütan Metalik Stentleme: Tek Merkez Deneyimi

Hasan Ali DURMAZ, Baki HEKİMOĞLU, Kürşat GÜREŞCİ, Onur ERGUN, Erdem BİRGİ

Hemodiyaliz Hastalarında Kronik Hepatit C Virüs Enfeksiyonu: Tedavi Sonuçları ve İlaç-İlaç Etkileşimleri Yönetimi

Şiyar ERDOĞMUŞ

Primer Kardiyak Tümörler ve Cerrahinin Uzun Dönem Sonuçları: 81 Hastaya Ait 38 Yıllık Tecrübe

Rıza DOĞAN, Timuçin SABUNCU, Mustafa YILMAZ, Metin DEMİRCİN, Ulaş KUMBASAR, Murat GÜVENER, Ahmet AYDIN

Akut Taşlı Kolesistiti Olan Yaşlı Hastalarda Perkütan Kolesistostomi

Volkan ÇAKIR, Ömür BALLI

Geri Dönüşümlü Kolistin Nefrotoksisitesi: Olgu Sunumu

İrem AKDEMİR KALKAN, Güle ÇINAR, Kemal Osman MEMİKOĞLU

Meme Kanseri ve Hepatosellüler Karsinom Hücre Dizilerinde Serum Starvasyonu ve Hipoksik Ortam Koşullarının Metabolik Yolak Protein Ekspresyonlarına Etkisinin İncelenmesi

Gürcan GÜNAYDIN

Malign Plevral Mezotelyoma Yönetimi

Güngör UTKAN, Mustafa Gürbüz