SİKLOOKSİJENAZ İNHİBİTÖRLERİ OLARAK BAZI 4,5-DİHİDRO-1H-PİRAZOL TÜREVLERİ ÜZERİNDE MOLEKÜLER DOKİNG ÇALIŞMALAR

Amaç: Antiinflamatuvar etkileri olduğu düşünülen bazı 4,5-dihidro-1H-pirazol türevlerinin siklooksijenaz 1(COX-1) ve siklooksijenaz 2 (COX-2) enzimleri ile etkileşimlerini incelemek amacıyla bu enzimler üzerinde docking çalışmaları yapılmıştır. Gereç ve Yöntem: Doking çalışmaları için protein veri bankasından, COX-1 enzimi için (3KK6) ve COX- 2 enzimi için (3LN1) seçilmiştir. Ligand ve proteinin yapıları Autodock 1.5.6 kullanılarak hazırlanmıştır.Bağlanma afinitesini belirlemek için AutoDock Vina, doking sonuçlarını analiz etmek ve görüntülemek için ise Discovery Studio 3.5 kullanılmıştır. Sonuç ve Tartışma: COX-1 ve COX-2 enzimleri üzerine yapılan doking işlemi sonucunda 4,5-dihidro- 1H-pirazol türevlerinin her iki enzimle de etkileşime girdiği görüldü. 4,5-Dihidro-1H-pirazol halkasının COX- 2 enzimi ile etkileşimde önemli olduğu bulundu. Yapıya hacimli bir grubun dahil edilmesi, COX-1 enzimi ile etkileşimde herhangi bir soruna neden olmazken, COX-2 enzimi ile bazı etkileşimleri ortadan kaldırdı. Enzimlerin inhibisyon özelliklerinin daha iyi aydınlatılabilmesi için bu çalışmanın in vitro ve in vivo COX inhibisyon testleri ile desteklenmesi gerekmektedir

MOLECULAR DOCKING STUDIES ON SOME 4,5-DIHYDRO-1H- PYRAZOLE DERIVATIVES AS CYCLOOXYGENASE INHIBITORS

Objective: To examine the interactions of some 4,5-dihydro-1H-pyrazole derivatives, which are thought to have antiinflammatory effects, with cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzymes, docking studies were carried out on these enzymes. Material and Method: COX-1 enzyme (3KK6) and COX-2 enzyme (3LN1) were selected from the protein data bank for docking studies. The ligand and protein constructs were prepared using Autodock 1.5.6. AutoDock Vina was used to determining the binding affinity, and Discovery Studio 3.5 was utilised to analyse and display the docking results. Result and Discussion: As a result of the docking process on COX-1 and COX-2 enzymes, 4,5-Dihydro- 1H-pyrazole derivatives were observed to interact with both enzymes. The 4,5-dihydro-1H-pyrazole ring was found to be important in its interactions with the COX-2 enzyme. The inclusion of a bulky group in the construct did not cause any problems in interaction with the COX-1 enzyme but eliminated some interactions with the COX-2 enzyme. To better elucidate the inhibition properties of enzymes, this study should be supported by in vitro and in vivo COX inhibition tests.

___

  • 1. Fullerton, J., Gilroy, D. (2016). Resolution of inflammation: a new therapeutic frontier. Nature Reviews Drug Discovery, 15, 551-567. [CrossRef]
  • 2. Mantzanidou, M., Pontiki, E., Hadjipavlou-Litina, D. Pyrazoles and pyrazolines as anti- inflammatory agents (2021). Molecules, 26(11), 3439. [CrossRef]
  • 3. Turini, M.E., DuBois, R.N. (2002). Cyclooxygenase-2: A therapeutic target. Annual Review of Medicine, 53, 35-57. [CrossRef]
  • 4. Chandrasekharan, N., Simmons, D.L. (2004). The cyclooxygenases. Genome Biology, 5(9), 241. [CrossRef]
  • 5. Zarghi, A., Arfaei, S. (2011). Selective COX-2 inhibitors: A review of their structure-activity relationships. Iranian Journal of Pharmaceutical Research, 10(4), 655-683. [CrossRef]
  • 6. Rouzer, C.A., Marnett L.J. (2009). Cyclooxygenases: structural and functional insights. Journal of Lipid Research, 50, S29-34. [CrossRef]
  • 7. Carvalho, L.C.R., Ribeiro, D., Seixas, R.S.G.R., Silva, A.M.S., Nave, M., Martins, A.C., Erhardt, S., Fernandes, E., Cabrita, E.J., Marques, M.M.B. (2015). Synthesis and evaluation of new benzimidazole-based COX inhibitors: a naproxen-like interaction detected by STD-NMR. RSC Advances, 5, 49098-49109. [CrossRef]
  • 8. Ju, Z., Su, M., Hong, J., La Kim, E., Moon, H.R., Chung, H.Y., Kim, S., Jung, J.H. (2019). Design of balanced COX inhibitors based on antiinflammatory and/or COX-2 inhibitory ascidian metabolites. European Journal of Medicinal Chemistry, 180, 86-98. [CrossRef]
  • 9. Blobaum, A.L., Marnett, L.J. (2007). Structural and functional basis of cyclooxygenase inhibition. Journal of Medicinal Chemistry, 50(7), 1425-1441. [CrossRef]
  • 10. El-Sayed, M.A., Abdel-Aziz, N.I., Abdel-Aziz, A.A., El-Azab, A.S., ElTahir, K.E. (2012). Synthesis, biological evaluation and molecular modeling study of pyrazole and pyrazoline derivatives as selective COX-2 inhibitors and antiinflammatory agents. Part 2. Bioorganic and Medicinal Chemistry, 20(10), 3306-3316. [CrossRef]
  • 11. El-Feky, S.A.H., El-Sami, Z.K.A., Osman, N.A., Lashine, J., Kamel, M.A., Thabet, H.K. (2015). Synthesis, molecular docking and antiinflammatory screening of novel quinoline incorporated pyrazole derivatives using the Pfitzinger reaction. Bioorganic Chemistry, 58, 104-116. [CrossRef]
  • 12. Abdelall, E.K.A., Lamie, P.F., Ali, W.A.M. (2016). Cyclooxygenase-2 and 15-lipoxygenase inhibition, synthesis, antiinflammatory activity and ulcer liability of new celecoxib analogues: Determination of region-specific pyrazole ring formation by NOESY. Bioorganic and Medicinal Chemistry Letters, 26(12), 2893-2899. [CrossRef]
  • 13. Abdellatif, K.R., Elsaady, M.T., Abdel-Aziz, S.A., Abusabaa, A.H. (2016). Synthesis, cyclooxygenase inhibition and antiinflammatory evaluation of new 1,3,5-triaryl-4,5-dihydro-1H- pyrazole derivatives possessing methanesulphonyl pharmacophore. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(6), 1545-1555. [CrossRef]
  • 14. Gedawy, E.M., Kassab, A.E., El Kerdawy, A.M. (2020). Design, synthesis and biological evaluation of novel pyrazole sulfonamide derivatives as dual COX2/5-LOX inhibitors. European Journal of Medicinal Chemistry, 189, 112066. [CrossRef]
  • 15. Akhtar, W., Marella, A., Alam, M.M., Khan, M.F., Akhtar, M., Anwer, T., Khan, F., Naematullah M., Azam, F., Rizvi, M.A., Shaquiquzzaman, M.(2021). Design and synthesis of pyrazole–pyrazoline hybrids as cancer‐associated selective COX‐2 inhibitors. Archive der Pharmazie, 354, e2000116. [CrossRef]
  • 16. Costa, R.F., Turones, L.C., Cavalcante, K.V.N., Rosa Júnior, I.A., Xavier, C.H., Rosseto, L.P., Napolitano, H.B., Castro, P.F.D.S., Neto, M.L.F., Galvão, G.M., Menegatti, R., Pedrino, G.R., Costa, E.A., Martins, J.L.R., Fajemiroye, J.O. (2021). Heterocyclic compounds: pharmacology of pyrazole analogs from rational structural considerations. Frontiers in Pharmacology, 12, 666725. [CrossRef]
  • 17. Evranos Aksoz, B., Ucar, G., Yelekçi, K. (2017). Design, synthesis and hMAO inhibitory screening of novel 2-pyrazoline analogues hMAO inhibitory screening of novel 2-pyrazolines. Combinatorial Chemistry and High Throughput Screening, 20, 510-521. [CrossRef]
  • 18. Evranos Aksoz, B., Ucar, G., Taş S.T., Aksoz, E., Yelekci, K., Erikci, A., Sara, Y., Iskit, A.B. (2017). New hMAO-A inhibitors with potential antidepressant activity: design, synthesis, biological screening and evaluation of pharmacological activity. Combinatorial Chemistry and High Throughput Screening, 20, 461-473. [CrossRef]
  • 19. Evranos Aksöz, B., Gürpınar, S.S., Eryılmaz, M. (2020). Antimicrobial activities of some pyrazoline and hydrazone derivatives. Turkish Journal of Pharmaceutical Science, 17, 500-505. [CrossRef]
  • 20. Protein Data Bank (PDB) https://www.rcsb.org/ [CrossRef]
  • 21. Flamandita, D., Sahlan, M., Lischer, K., Pratami, D.K. (2019). Molecular docking study of antiinflammatory biomarkers in sulawesi propolis as potent inhibitors of cyclooxygenase-2. in 2nd IEEE International Conference on Innovative Research and Development, ICIRD 2019, 9074773, Institute of Electrical and Electronics Engineers Inc., Depok, Indonesia, 28/06/19. [CrossRef]
  • 22. AutoDockTools, the free GUI for AutoDock. [http://autodock.scripps.edu/resources/adt]. [CrossRef]
  • 23. Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R. (2012). "Avogadro: An advanced semantic chemical editor, visualisation, and analysis platform". Journal of Cheminformatics, 4, 17. [CrossRef]
  • 24. Trott, O., Olson, A.J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimisation and multithreading. Journal of Computational Chemistry, 31, 455-461. [CrossRef]
  • 25. Barnum, D., Greene, J., Smellie, A. and Sprague, P. (1996). Identification of common functional configurations among molecules. Journal of Chemical Information and Computer Sciences 36, 563–571. [CrossRef]
Ankara Üniversitesi Eczacılık Fakültesi Dergisi-Cover
  • ISSN: 1015-3918
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2016
  • Yayıncı: Ankara Üniversitesi Eczacılık Fakültesi
Sayıdaki Diğer Makaleler

TIP VE ECZACILIK ALANINDAKİ 1,2,4-TRİAZOL TÜREVLERİ VE UYGULAMA ÖNERİLERİ

Yurii SAMELİUK, Tetyana KAPLAUSHENKO, Fadi AL ZEDAN

TÜRKİYE’DE YARDIMCI ECZACILIK UYGULAMASI: ECZACILARIN PERSPEKTİFİ

Sinan BULUT, Emrah BİLGENER

2-((4-R-5-R1-4H-1,2,4-TRİAZOL-3-İL)TİYO)ASETALDEHİTLERİN İLİDENHİDRAZİDLERİNİN SENTEZİ, ANTİMİKROBİYAL VE ANTİFUNGAL AKTİVİTES

Olexandr PANASENKO, Roman SHCHERBYNA, Olha POLONETS, Natalia NEDOREZANIUK, Maryna DUCHENKO

3- VE 4-SÜBSTİTÜE-5-((3-FENİLPROPİL)TİYO)-4H-1,2,4-TRİAZOLLERİN MİKRODALGA SENTEZİ

Andrey SAFONOV, Alina NEVMYVAKA, Oleksandr PANASENKO, Yevgenii KNYSH

TÜRKİYE’DE DOĞAL OLARAK YETİŞEN CELTIS AUSTRALIS L. VE C. TOURNEFORTII LAM. (CANNABACEAE) MEYVELERİNİN YAĞ ASİTİ BİLEŞİMLERİ VE ANTİMİKROBİYAL ETKİLERİNİN DEĞERLENDİRİLMESİ

Gülderen YILMAZ, Gözde ÖZTÜRK, Betül DEMİRCİ

BİR SPEKTROFOTOMETRİK İKİLİ KARIŞIM ANALİZİNİN DOĞRULAMA ÇALIŞMASI

Özgür ÜSTÜNDAĞ, Erdal DİNÇ

ANTEP FISTIĞI (PISTACIA VERA L.) MEYVE KABUĞU: BİYOAKTİF BİLEŞİKLER İÇİN POTANSİYEL KAYNAK

Muhammed Mesud HÜRKUL

İN VİTRO DERİ MODELLERİ

Ömer YEDİKAYA, Fahriye Ulya BADILLI

4-HİDROKSİ-BENZAMİD TÜREVİNİN YAPISAL VE FARMASÖTİK DEĞERLENDİRMESİ: ANTİ-BAKTERİYAL VE ANTİ-VİRAL ETKİ

Aarthi Kundam VASUDEVAN, Hemamalini RAJAGOPAL, S. MUTHU, Fazılath Basha ASİF, Badiadka NARAYANA

GLYCYRRHIZA GLABRA'NIN BAZI TIBBİ ÖZELLİKLERİ (MEYAN KÖKÜ)

Falah Saleh MOHAMMED, Nuh KORKMAZ, Mehmet DOĞAN, Ali Erdem ŞABİK, Mustafa SEVİNDİK